1,040 research outputs found
Time-resolved charge translocation by the Ca-ATPase from sarcoplasmic reticulum after an ATP concentration jump
Time-resolved measurements of currents generated by Ca-ATPase from fragmented sarcoplasmic reticulum (SR) are described. SR vesicles spontaneously adsorb to a black lipid membrane acting as a capacitive electrode. Charge translocation by the enzyme is initiated by an ATP concentration jump performed by the light-induced conversion of an inactive precursor (caged ATP) to ATP with a time constant of 2.0 ms at pH 6.2 and 24 degrees C. The shape of the current signal is triphasic, an initial current flow into the vesicle lumen is followed by an outward current and a second slow inward current. The time course of the current signal can be described by five relaxation rate constants, lambda1 to lambda5 plus a fixed delay D approximately 1–3 ms. The electrical signal shows that 1) the reaction cycle of the Ca-ATPase contains two electrogenic steps; 2) positive charge is moved toward the luminal side in the first rapid step and toward the cytoplasmic side in the second slow step; 3) at least one electroneutral reaction precedes the electrogenic steps. Relaxation rate constant lambda3 reflects ATP binding, with lambda(3,max) approximately 100 s(-1). This step is electroneutral. Comparison with the kinetics of the reaction cycle shows that the first electrogenic step (inward current) occurs before the decay of E2P. Candidates are the formation of phosphoenzyme from E1ATP (lambda2 approximately 200 s[-1]) and the E1P --> E2P transition (D approximately 1 ms or lambda1 approximately 300 s[-1]). The second electrogenic transition (outward current) follows the formation of E2P (lambda4 approximately 3 s[-1]) and is tentatively assigned to H+ countertransport after the dissociation of Ca2+. Quenched flow experiments performed under the conditions of the electrical measurements 1) demonstrate competition by caged ATP for ATP-dependent phosphoenzyme formation and 2) yield a rate constant for phosphoenzyme formation of 200 s(-1). These results indicate that ATP and caged ATP compete for the substrate binding site, as suggested by the ATP dependence of lambda3 and favor correlation of lambda2 with phosphoenzyme formation
The translational potential of microRNAs as biofluid markers of urological tumours
MicroRNAs (miRNAs) are secreted by cells in vesicles, bound in a ribonucleoprotein complex or as free molecules. These miRNA secretion pathways are dysregulated in cancer, making miRNAs attractive candidate molecules for liquid biopsies. A number of studies have investigated the regulation of miRNA secretion into blood and urine and suggested that miRNAs are noninvasive diagnostic, prognostic and surveillance markers in urological carcinomas, and research in this area has increased over the past 5 years. However, methodological and analytical pitfalls exist and require addressing to enable future translation of the laboratory findings regarding miRNAs as biomarkers into clinical practice in bladder cancer, kidney cancer, prostate cancer and testicular cancer
The miRNA-kallikrein axis of interaction: a new dimension in the pathogenesis of prostate cancer
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications
A Retrospective Multicenter Analysis of the Incidence of Bone-Only Disease at PSMA PET/CT in Castration Resistant Prostate Cancer Patients
PSMA PET/CT has unprecedented accuracy for localization of initial or recurrent prostate cancer (PC), which can be applied in a metastasis-directed therapy approach. PSMA PET/CT (PET) also has a role in the selection of patients for metastasis-directed therapy or radioligand therapy and therapy assessment in CRPC patients. The purpose of this multicenter retrospective study was to determine the incidence of bone-only metastasis in CRPC patients who underwent PSMA PET/CT for restaging, as well as identifying potential predictors of bone-only PET positivity. The study analyzed data from 179 patients from two centers in Essen and Bologna. Results showed that 20.1% of the patients had PSMA uptake only in the bone, with the most frequent lesions located in the vertebrae, ribs, and hip bone. Half half of the patients showed oligo disease in bone and may benefit from a bone-metastasis-directed therapy. Initial positive nodal status and solitary ADT were shown to be negative predictors of osseous metastasis. The role of PSMA PET/TC in this patient population needs to be further explored in terms of its role in the evaluation and adoption of bone-specific therapies
Universal Negative Poisson Ratio of Self Avoiding Fixed Connectivity Membranes
We determine the Poisson ratio of self-avoiding fixed-connectivity membranes,
modeled as impenetrable plaquettes, to be sigma=-0.37(6), in statistical
agreement with the Poisson ratio of phantom fixed-connectivity membranes
sigma=-0.32(4). Together with the equality of critical exponents, this result
implies a unique universality class for fixed-connectivity membranes. Our
findings thus establish that physical fixed-connectivity membranes provide a
wide class of auxetic (negative Poisson ratio) materials with significant
potential applications in materials science.Comment: 4 pages, 3 figures, LaTeX (revtex) Published version - title changed,
one figure improved and one reference change
Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients
Current treatments for clear cell renal cell cancer (ccRCC) are insufficient because two-thirds of patients with metastases progress within two years. Here we report the identification and characterization of a cancer stem cell (CSC) population in ccRCC. CSCs are quantitatively correlated with tumor aggressiveness and metastasis. Transcriptional profiling and single cell sequencing reveal that these CSCs exhibit an activation of WNT and NOTCH signaling. A significant obstacle to the development of rational treatments has been the discrepancy between model systems and the in vivo situation of patients. To address this, we use CSCs to establish non-adherent sphere cultures, 3D tumor organoids, and xenografts. Treatment with WNT and NOTCH inhibitors blocks the proliferation and self-renewal of CSCs in sphere cultures and organoids, and impairs tumor growth in patient-derived xenografts in mice. These findings suggest that our approach is a promising route towards the development of personalized treatments for individual patients
On twisted Fourier analysis and convergence of Fourier series on discrete groups
We study norm convergence and summability of Fourier series in the setting of
reduced twisted group -algebras of discrete groups. For amenable groups,
F{\o}lner nets give the key to Fej\'er summation. We show that Abel-Poisson
summation holds for a large class of groups, including e.g. all Coxeter groups
and all Gromov hyperbolic groups. As a tool in our presentation, we introduce
notions of polynomial and subexponential H-growth for countable groups w.r.t.
proper scale functions, usually chosen as length functions. These coincide with
the classical notions of growth in the case of amenable groups.Comment: 35 pages; abridged, revised and update
Abstract composition laws and their modulation spaces
On classes of functions defined on R^2n we introduce abstract composition
laws modelled after the pseudodifferential product of symbols. We attach to
these composition laws modulation mappings and spaces with useful algebraic and
topological properties.Comment: 19 page
Kinetic study of the reaction of leuco methylene blue with 2,6-dimethyl-p-benzoquinone in a reverse micellar system
The kinetics of the reaction of leuco methylene blue (MBH) with 2,6-dimethyl-p-benzoquinone (DMBQ) were studied in a heptane/bis(2-ethylhexyl)-sulfosuccinate (AOT)/water reverse micellar system. The pseudo-first-order rate constant (k (obsd)) obtained in the presence of excess of DMBQ was found to be proportional to the initial concentration of DMBQ for W (0)=3, 5, 10, 15 and 20 (W (0)=[H2O]/[AOT]). The second-order rate constant (k (2)=k (obsd)/[DMBQ](0)) increased with an increase in the W (0) value, but was almost independent of the concentration of the water pool. A mechanism involving the distribution of DMBQ between the reverse micellar interface and bulk organic solvent was proposed to explain these findings.</p
- …