31 research outputs found

    Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging

    Get PDF
    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research

    Microplastics Uptake and Egestion Dynamics in Pacific Oysters, Magallana gigas (Thunberg, 1793), Under Controlled Conditions

    Get PDF
    Microplastics debris (< 5 mm) are increasingly abundant in the marine environment, therefore, potentially becoming a growing threat for different marine organisms. Through aquatic animals, these can enter in the human food chain, and can be perceived as a risk for consumers’ health. Different studies report the presence of particles in marketable shellfish including the world wide commercially grown Pacific oyster Magallana gigas (Thunberg, 1793). The aim of this study is to examine the potential risk of microplastics entering in the human food chain through this shellfish species, investigating the dynamics of the uptake, egestion (faeces) and rejection (pseudofaeces) of microplastics in Pacific oysters under controlled conditions. M. gigas collected from a farm in the San Teodoro lagoon (Italy), were exposed to 60 fluorescent orange polystyrene particles L−1 of known sizes (100, 250 and 500 μm). The uptake of each particle size was 19.4 ± 1.1%, 19.4 ± 2% and 12.9 ± 2% respectively. After exposure M. gigas were left to depurate for 72 h, during which 84.6 ± 2% of the particles taken up were released whilst 15.4 ± 2% were retained inside the shell cavity. No microplastic particles were found in the animals’ soft tissues. The results of this study, suggest that depuration is an effective method to reduce presence of large microplastic particles, in the size range 100–500 μm, in M. gigas. Importantly, the data suggests that the burden that could theoretically be up taken by consumers from these shellfish is negligible when compared to other routes
    corecore