95 research outputs found

    Proteomic 2D DIGE profiling of human vascular endothelial cells exposed to environmentally relevant concentration of endocrine disruptor PCB153 and physiological concentration of 17β-estradiol

    Get PDF
    Considering the recent studies that question previously reported cardio-protective effects of estrogen, there is a growing concern that endocrine disruptors may also contribute to the pathology of cardiovascular disease. PCB153 is one of the most commonly found polychlorinated biphenyls, and based on epidemiological studies, has been implicated in cardiovascular disease. The endocrine disruptor PCB153 has been reported to bind the estrogen receptor alpha, induce vessel formation, and increase the formation of reactive oxygen species in endothelial cells. Since PCB153-induced phenotypic changes are similar to estradiol, we postulated that PCB153 activates redox signaling pathways common to 17β-estradiol. Whether the effect of PCB153 on the proteome is comparable to 17β-estradiol is not known. Therefore we investigated the proteome of human microvascular endothelial cells exposed to PCB153 (100 ng/ml) for 24 h. Using 2D DIGE coupled to MALDI-time of flight (TOF)/TOF MS, we found 96 protein spots significantly (greater than 1.5-fold) modulated by experimental treatments. Mass spectrometry identified 11 of 13 protein spots with high confidence protein score CI that was greater than 95%. Of the identified proteins, lamin A/C and far upstream element-binding protein (FUBP1) were regulated similarly by both treatments. FUBP1 is of particular interest because it controls c-myc. While lamin A/C modulates transcription factor AP-1 function. Interestingly, both c-myc and AP-1 are redox-sensitive transcription factors known to regulate genes required for cell growth. Network analysis of these proteins showed transforming growth factor β-1 and c-myc to play central roles. While our findings do not reveal any mechanisms involved in PCB153-induced vascularization, the identified network does provide a potential target pathway for further mechanistic studies of these relationships

    Estrogen, mitochondria, and growth of cancer and non-cancer cells

    Get PDF
    In this review, we discuss estrogen actions on mitochondrial function and the possible implications on cell growth. Mitochondria are important targets of estrogen action. Therefore, an in-depth analysis of interaction between estrogen and mitochondria; and mitochondrial signaling to nucleus are pertinent to the development of new therapy strategies for the treatment of estrogen-dependent diseases related to mitochondrial disorders, including cancer

    PCB153-Induced Overexpression of ID3 Contributes to the Development of Microvascular Lesions

    Get PDF
    Microvascular lesions resulting from endothelial cell dysfunction are produced in the brain, lung, kidney, and retina of patients of complex chronic diseases. The environmental and molecular risk factors which may contribute in the development of microvascular damage are unclear. The mechanism(s) responsible for initiating microvascular damage remain poorly defined, although several inciting factors have been proposed, including environmental toxicants-induced oxidative stress. Enhanced neovascularization has been implicated in either the development or progression of proliferative vascular lesions. Here, we present evidence for how PCB-induced ROS may contribute to the development of a neovascular phenotype with the aim of elucidating the role of environmental toxicants in endothelial dysfunction with a specific focus on the inhibitor of differentiation protein ID3. We used a combination of phenotype and immunohistochemical analysis followed by validating with protein expression and post-translational modifications with Western Blot and MALDI-TOF/TOF analysis. We also looked for a correlation between ID3 expression in vascular tissue. Our results showed that PCB-induced ROS mediated a highly tube branched neovascular phenotype that also depended on ID3 and Pyk2; and PCB153 treatment increased the size of endothelial spheroids under conditions typically used for clonal selection of stem cell spheroids. High ID3 protein expression correlated with a greater degree of malignancy and oxidative DNA damage marker 8-OHdG in blood vessels from human subjects. PCB153 treatment increased both serine and tyrosine phosphorylation of endothelial ID3. Stable ID3 overexpression increased cell survival of human microvascular endothelial cell line hCMEC/D3. In summary, our data provide evidence that ID3 may play a critical role in regulating vascular endothelial cell survival and development of microvascular lesions induced by persistent environmental pollutants such as PCB153. Findings of this study are important because they provide a new paradigm by which PCBs may contribute to the growth of microvascular lesions

    Microvascular lesions by estrogen-induced ID3: its implications in cerebral & cardiorenal vascular disease

    Get PDF
    Severe symptoms of cerebral and cardiorenal vascular diseases can be triggered when cerebral, coronary, or glomerular arterioles grow inappropriately as a result of abnormal cell proliferation. The risk factor(s) and molecular mechanisms responsible for microvascular lesion formation are largely unknown. Although controversial, both animal and epidemiological studies have shown that estrogen increases the risk of stroke which may be due to microvascular lesions. Since microvascular diseases are characterized by excessive vessel growth, it is plausible that estrogen-induced neovascularization contributes to the growth of microvascular lesions. We present evidence for how ID3 overexpression in endothelial cells contributes to the development of an estrogen-induced neovascular phenotype with an additional focus on Pyk2 kinase. Our data showed that ID3 overexpression increased neovascularization, cell migration, and spheroid growth of human cerebral microvascular endothelial cells, hCMEC/D3. ID3 overexpressing cells showed significant estrogen-induced G2/M phase transition. Estrogen treatment increased both ID3 phosphorylation and total protein that was inhibited by tamoxifen; and Pyk2 mediated estrogen-induced ID3 mRNA expression. These findings suggest that Pyk2 signals ID3 expression and ID3 is necessary for estrogen-induced neovascularization in hCMEC/D3 cells. A better understanding of how microvascular lesions depend on ID3 may open new avenues for prevention and treatment of neurological diseases

    Gene expression profile of endothelial cells exposed to estrogenic environmental compounds: implications to pulmonary vascular lesions

    Get PDF
    AIMS: The cardiovascular system is an important target of estrogenic compounds. Considering the recent studies that question previously reported cardio-protective effects of estrogen, there is a growing concern that estrogenic environmental compounds may contribute to the pathology of vascular lesion formation. MAIN METHODS: Real-time quantitative PCR was used to monitor the expression of genes involved in vascularization. Using Bayesian network modeling, we determined a gene network that estrogenic chemicals modulate in human vascular endothelial cells. KEY FINDINGS: We showed that planar and coplanar polychlorinated biphenyls (PCBs) induce the expression of different genes compared to estradiol. Non-planar PCB congener 153 induced NOTCH3 which is a new finding as well as CCL2 and IL8 similar to what has been reported by other non-planar PCBs in endothelial cells. Our gene network indicated that experimental treatments signal a network containing TGF-beta receptor and NOTCH3; molecules biologically relevant to signaling pulmonary vascular lesions. SIGNIFICANCE: We report in the present study that exposure of vascular endothelial cells to environmentally relevant concentrations of estrogenic PCBs induce gene networks implicated in the process of inflammation and adhesion. Our data suggest that PCBs can promote vascular lesion formation by activating gene networks involved in endothelial cell adhesion, cell growth, and pro-inflammatory molecules which were different from natural estrogen. Since inflammation and adhesion are a hallmark in the pathology of endothelial cell dysfunction, reconstructing gene networks provide insight into the potential mechanisms that may contribute to the vascular risks associated with estrogenic environmental chemicals

    ID3 Contributes to the Acquisition of Molecular Stem Cell-Like Signature in Microvascular Endothelial Cells: Its implication for understanding microvascular diseases

    Get PDF
    While significant progress has been made to advance our knowledge of microvascular lesion formation, yet the investigation of how stem-like cells may contribute to the pathogenesis of microvascular diseases is still in its infancy. We assessed whether the inhibitor of DNA binding and differentiation 3 (ID3) contributes to the acquisition of a molecular stem cell-like signature in microvascular endothelial cells. The effects of stable ID3 overexpression and SU5416 treatment — a chemical inducer of microvascular lesions, had on the stemness signature was determined by flow cytometry, immunoblot, and immunohistochemistry. Continuous ID3 expression produced a molecular stemness signature consisting of CD133+ VEGFR3+ CD34+ cells. Cells exposed to SU5416 showed positive protein expression of ID3, VEGFR3, CD34 and increased expression of pluripotent transcription factors Oct-4 and Sox-2. ID3 overexpressing cells supported the formation of a 3-D microvascular lesion co-cultured with smooth muscle cells. In addition, in vivo microvascular lesions from SuHx rodent model showed an increased expression of ID3, VEGFR3, and Pyk2 similar to SU5416 treated human endothelial cells. Further investigations into how normal and stem-like cells utilize ID3 may open up new avenues for a better understanding of the molecular mechanisms which are underlying the pathological development of microvascular diseases

    Strain Promoted Click Chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine Nucleosides and 8-Azidoadenosine Triphosphate with Cyclooctynes. Application to Living Cell Fluorescent Imaging

    Get PDF
    Strain-promoted click chemistry of nucleosides and nucleotides with an azido group directly attached to the purine and pyrimidine rings with various cyclooctynes in aqueous solution at ambient temperature resulted in efficient formation (3 min to 3 h) of fluorescent, light-up, triazole products. The 2- and 8-azidoadenine nucleosides reacted with fused cyclopropyl cyclooctyne, dibenzylcyclooctyne, or monofluorocyclooctyne to produce click products functionalized with hydroxyl, amino, N-hydroxysuccinimide, or biotin moieties. The 5-azidouridine and 5-azido-2\u27-deoxyuridine were similarly converted to the analogous triazole products in quantitative yields in less than 5 min. The 8-azido-ATP quantitatively afforded the triazole product with fused cyclopropyl cyclooctyne in aqueous acetonitrile (3 h). The novel triazole adducts at the 2- or 8-position of adenine or 5-position of uracil rings induce fluorescence properties which were used for direct imaging in MCF-7 cancer cells without the need for traditional fluorogenic reporters. FLIM of the triazole click adducts demonstrated their potential utility for dynamic measuring and tracking of signaling events inside single living cancer cells

    Vascular endothelial growth factor receptor 3 signaling contributes to angioobliterative pulmonary hypertension

    Get PDF
    The mechanisms involved in the development of severe angioobliterative pulmonary arterial hypertension (PAH) are multicellular and complex. Many of the features of human severe PAH, including angioobliteration, lung perivascular inflammation, and right heart failure, are reproduced in the Sugen 5416/chronic hypoxia (SuHx) rat model. Here we address, at first glance, the confusing and paradoxical aspect of the model, namely, that treatment of rats with the antiangiogenic vascular endothelial growth factor (VEGF) receptor 1 and 2 kinase inhibitor, Sugen 5416, when combined with chronic hypoxia, causes angioproliferative pulmonary vascular disease. We postulated that signaling through the unblocked VEGF receptor VEGFR3 (or flt4) could account for some of the pulmonary arteriolar lumen-occluding cell growth. We also considered that Sugen 5416-induced VEGFR1 and VEGFR2 blockade could alter the expression pattern of VEGF isoform proteins. Indeed, in the lungs of SuHx rats we found increased expression of the ligand proteins VEGF-C and VEGF-D as well as enhanced expression of the VEGFR3 protein. In contrast, in the failing right ventricle of SuHx rats there was a profound decrease in the expression of VEGF-B and VEGF-D in addition to the previously described reduction in VEGF-A expression. MAZ51, an inhibitor of VEGFR3 phosphorylation and VEGFR3 signaling, largely prevented the development of angioobliteration in the SuHx model; however, obliterated vessels did not reopen when animals with established PAH were treated with the VEGFR3 inhibitor. Part of the mechanism of vasoobliteration in the SuHx model occurs via VEGFR3. VEGFR1/VEGFR2 inhibition can be initially antiangiogenic by inducing lung vessel endothelial cell apoptosis; however, it can be subsequently angiogenic via VEGF-C and VEGF-D signaling through VEGFR3

    Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells

    Get PDF
    Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer
    corecore