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‡Department of Environmental and Occupational Health, Florida International University, Miami, 
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§Department of Biology, University of Miami, Coral Gables, Florida 33146, United States

Abstract

Strain-promoted click chemistry of nucleosides and nucleotides with an azido group directly 

attached to the purine and pyrimidine rings with various cyclooctynes in aqueous solution at 

ambient temperature resulted in efficient formation (3 min - 3 h) of fluorescent, light-up, triazole 

products. The 2- and 8-azidoadenine nucleosides reacted with fused cyclopropyl cyclooctyne, 

dibenzylcyclooctyne or monofluorocyclooctyne to produce click products functionalized with 

hydroxyl, amino, N-hydroxysuccinimide, or biotin moieties. The 5-azidouridine and 5-azido-2′-

deoxyuridine were similarly converted to the analogous triazole products in quantitative yields in 

less than 5 minutes. The 8-azido-ATP quantitatively afforded the triazole product with fused 

cyclopropyl cyclooctyne in aqueous acetonitrile (3 h). The novel triazole adducts at the 2 or 8 

position of adenine or 5-position of uracil rings induce fluorescence properties which were used 

for direct imaging in MCF-7 cancer cells without the need for traditional fluorogenic reporters. 

FLIM of the triazole click adducts demonstrated their potential utility for dynamic measuring and 

tracking of signaling events inside single living cancer cells.
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INTRODUCTION

Click chemistry is a common method used for drug discovery, bioconjugation, proteomic 

profiling and potential identification of cellular targets.1–3 The strain promoted 1,3-dipolar 

[3+2] cycloaddition of azides and cyclooctyne (SPAAC) derivatives, first discovered by 

Bertozzi4–8 and further developed by Boons,9 and van Delft,10–12 occurs readily under 

physiological conditions in the absence of supplementary reagents such as copper and 

microwave heating. The SPAAC reactions are also used for the selective modification of 

compounds or living cells7,13 including for the imaging of cell surface glycoproteins by 

fluorescence lifetime imaging microscopy.14

Nucleosides, nucleotides and oligonucleotides have now been explored as substrates for 

click chemistry for some time.15–17 Bioconjugation of nucleosides and oligonucleotides 

bearing alkyne modified nucleobases with azide modified fluorescent dyes, sugars and 

peptides have been well documented.2,16–19 These coupling reactions usually required Cu(I), 

a ligand and heating or overnight stirring. Click chemistry of nucleosides and 

oligodeoxynucleotides (ODNs) with modified sugars bearing terminal alkyne groups have 

been also explored.15,17,20–23

Azide modified sugars,24–28 such as AZT, have also been studied in click chemistry with 

typical reaction conditions including the addition of Cu(I) and/or microwave assisted 

heating. However, the application of the nucleosides bearing an azido group attached 

directly to the heterocyclic bases in the click chemistry with alkyne partners has received 

much less attention thus far. This is due to the less developed chemical28–34 and 

enzymatic35–37 synthesis of azido nucleosides and oligonucleotides and their apparent lack 

of compatibility with the solid-phase synthesis of DNA fragments which required trivalent 

phosphorous-based precursors.38 Furthermore, Cu+/Cu2+ ions often used for click chemistry 

are known to mediate DNA cleavage.39

The 8-azidoadenosine was found to be unreactive with terminal alkyne bearing cyclen Eu3+ 

complexes even after prolonged reaction times (120 h), addition of a large excess of 
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CuSO4·5H2O, sodium ascorbate and refluxing in DMF.40 The ribose protected 8-

azidoadenosine afforded, however, triazole product in modest yields when treated with 

(trimethylsilyl)acetylene at 80 °C for 20 h.41 Similarly, the 2-azidopurine nucleosides were 

only moderately reactive in copper catalyzed click reactions42–44 and also required several 

equivalents of alkyne and prolonged reaction times. These prerequisites are, however, 

unsuitable for the biological applications including the potential medicinal applications 

because of the harsh conditions used and cytotoxic effect of the copper catalyst.45,46 

Moreover the coupling between 5-azidouridine and terminal alkynes are also scarcely 

developed,47 mainly because of the photochemical instability of the 5-azidouracil 

substrates.48 To overcome these limitations the 5-(azido)methyluracil nucleosides were used 

instead to study the click chemistry of azido-modified pyrimidine bases.49 Furthermore, the 

strain promoted click chemistry with cyclooctyne modified phosphate backbone for labeling 

of DNA50–52 and RNA,39,53 has recently been developed.54

Naturally occurring nucleic acid components are usually non-fluorescent; therefore, 

fluorescence has typically been conferred on nucleosides by extending π conjugation of the 

heterocyclic base55,56 or by conjugation with known fluorophores.57,58 Herein, we report a 

protocol for the convenient strain promoted click chemistry (SPAAC) of 2- or 8-

azidoadenine and 5-azidouracil nucleosides and 8-azidoadenosine triphosphate with various 

cyclooctynes in aqueous solution at ambient temperature and its application to imaging in 

living cells by direct fluorescence light-up.

RESULTS AND DISCUSSION

Synthesis

Reaction between the equivalent amount of 8-azidoadenosine59 1 and symmetrically fused 

cyclopropyl cyclooctyne10 (OCT) 5 occurred efficiently in an aqueous solution of 

acetonitrile (ACN) at ambient temperature (3 h) to produce triazole 7 in 96% yield as a 

mixture60 of ~1:1 regioisomers after silica gel chromatography or HPLC purification 

(Scheme 1). This reaction time and efficiency were similar when coupling of 1 and 5 was 

carried out in MeOH, EtOH or Opti-MEM I cell culture media (see Table S1 in SI section 

for reaction details). A kinetic analysis of the click reaction between azide 1 and cyclooctyne 

5 showed that reaction occurred rapidly (60% conversion in 20 minutes) without the 

formation of any byproducts (Figure 1). The profile for the reaction was measured by 

integrating disappearance of the signal of H2 of substrate 1 at 8.07 ppm and appearance of 

H2 signal at 8.28 ppm for the product 7 on 1H NMR spectra. This reaction displays a second 

order rate constant of 0.11 M−1s−1 which is similar to the previously published data on the 

reaction of 5 with benzyl azide in the same solvent system (k = 0.14 M−1s−1)10 (see SI 

section for more details).

The reaction between 8-azido-9-(β-D-arabinofuranosyl)adenine61 2 or 8-azido-9-(2-

deoxy-2-fluoro-β-D-arabinofuranosyl)adenine 3 (see SI section for the synthesis of 3) and 

cyclooctyne 5 also proceeded smoothly (3 h, rt) in ACN/H2O (3:1) to give triazole 8 or 10, 

quantitatively. Analogous treatment of 8-azido-2′-deoxyadenosine62 4 with 5 gave the click 

product 11 (97%). Since biotin tagging is a common in-vivo method used for visualization 
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of proteins and biomolecules with streptavidin, we also demonstrated quantitative labelling 

of azide 2 with biotin modified OCT 6 to give labeled adduct 9.

The click reaction of 1 with more complex cyclooctynes including strain modulated 

dibenzylcyclooctyne63 (DBCO) 12 or electronic modulated monofluorocyclooctyne64,65 

(MFCO) 16 in polar protic solvents produced the triazoles modified with a terminal amine 

13 or “reactive” N-hydroxysuccinimide ester 17, quantitatively as 1:1 mixture of isomers 

(Scheme 2). The reaction of 1 with 12 required overnight heating at 50 °C, while coupling of 

1 and 16 was completed at ambient temperature overnight. Goddard and Bertozzi noted that 

although the aryl ring fusion may enhance the cyclooctyne ring stain, the sluggish reactivity 

of DBCO 12 with azides can be attributed to the “flagpole” hydrogen atoms ortho to the 

aryl/cyclooctyne ring junction which decrease reactivity by steric interference with the azide 

in the transition state.8,66 Furthermore, azido nucleosides 2 and 4 react with 12 to give the 

corresponding triazole products 14 and 15, respectively.

The 2-azidoadenosine 19 also undergoes SPAAC reaction efficiently (Scheme 3). Thus, 19 
reacts with cyclooctyne 5 in aqueous media at ambient temperature (3 h) to yield adduct 18 
in quantitative yield. Similarly, 19 reacts with 12 to afford triazole 20 but, as noted also 

above (Scheme 2), the elevated temperature (50 °C) was required for the completion. The 

natural and 2-substituted purine nucleosides and nucleotides favor an anti-glycosyl bond 

orientation;67 however, addition of bulky substituents at the C8 position forces a 

predominantly syn conformation in solution because of the unfavorable steric and 

electrostatic repulsions between the 8-substituent and the ribose ring.68,69 Thus, the C2 and 

C8 modified click adducts described here provide analogues with both syn- and anti-
conformations offering the potential for differing cellular targets.

The click reaction between 5-azidouridine47 21 and several cyclooctynes including 5, 6, 12 
or 16 also proceeded efficiently yielding the corresponding novel click adducts 23, 24, 25, 

26 and 27. Thus, treatment of 21 with hydroxyl or biotin modified cyclooctyne 5 or 6 in 

ACN:H2O mixture (3:1, v/v) afforded 23 or 24 in as fast as 3 minutes at ambient 

temperature (Scheme 4). Analogous treatment of 21 with free amine modified 

dibenzylcyclooctyne 12 or NHS modified monofluorocyclooctyne 16 in MeOH gave 

complete conversion to triazoles 26 or 27 in less than 15 minutes. Furthermore, click 

reaction of the highly photolyzable 5-azido-2′-deoxyuridine70 22 with cyclooctyne 5, in the 

ACN/H2O/MeOH (3:1:1 v/v/v) provided corresponding triazole product 25 in excellent 

yield. The latter coupling must be run in the dark in order to avoid the known photolysis of 

22 caused by UV irradiation.48 Substrate 22 was prepared by conversion of 5-bromo-2′-

deoxyuridine71 to 5-amino derivative followed by Sandmeyer azidation.70

Since click chemistry for labeling oligonucleotides are an emerging field,28,31–33 we 

established a protocol for SPAAC with azido base modified nucleotides. Thus, reaction of 8-

azidoadenosine 5′-triphosphate tetralithium salt 28 and cyclooctyne 5 in aqueous ACN (3 h) 

quantitatively yielded triazole 29 (Scheme 5). A kinetic analysis of this reaction depicted in 

Figure 2 shows that reaction occurred efficiently (55% in 35 min, 92% in 2 h) without 

formation of byproducts. This reaction displays a second order rate constant of 0.07 M−1s−1, 
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which is similar to the previously published data on reaction of 5 with benzyl azide in the 

same solvent system.10 (see SI section for more details)

In summary, the efficiency of the SPAAC reaction between azido nucleosides and 

cyclooctynes strongly depends on the structure of azido and cyclooctyne substrates, whereas 

the choice of the solvent has less effect. Thus, the 5-azidouracil precursors were significantly 

more reactive than the 2- or 8-azidoadenine substrates; however, the position of the azido 

group on the adenine scaffold did not affect reactivity of adenine substrates. As cyclooctynes 

are concerned, the OCT 5 appeared to be the most reactive towards azido nucleosides 

followed by MFCO 16 and lastly DBCO 12 (see Table S1 in SI section for a summary of 

reaction conditions and yields). The selection of solvents for the click reactions was based 

on substrate solubility. For example, some azido nucleosides (e.g. 1 or 2) are easily water 

soluble, while others are not (e.g. 22) and require methanol to solubilize. Also the 

hydrocarbon scaffold of the cyclooctynes limits their solubility in aqueous solutions.72 

Typical SPAAC reactions for the uridine substrate 21 with OCT 5, MFCO 16 or DBCO 12 
were completed in 5 min (rt), 12 min (rt) and 15 min (rt), respectively; whereas reactions for 

the adenosine substrate 1 with the same cyclooctynes required 3 h (rt), 16 h (rt) and 16 h 

(50 °C), respectively in aqueous ACN or MeOH

Fluorescent Characterization

Unsubstituted nucleosides are typically weakly fluorescent;73–76 however, substitution at the 

C2 and C8 position of the purine ring or C5 of the pyrimidine ring with fluorogenic moieties 

results in nucleosides with fluorescent properties.19,77,78 While the 8-azido-arabino-

adenosine 2 has no fluorescence, the click adduct 7 with triazole ring attached directly to the 

imidazolyl ring of purine via a nitrogen atom emits at 300–500 nm with the maximum 

emission at 376 nm (Φem = 0.6%, B = 0.13 M−1cm−1). Similarly, 5-azidouridine 21 exhibits 

no noticeable fluorescence, whereas the triazole product 23 shows moderate emission 

between 285 nm and 550 nm with two emission peaks at 320 nm and 450 nm (Φem = 1.1%, 

B = 0.12 M−1cm−1). Interestingly, this triazole product showed an excitation maxima at 388 

nm which was mainly observed in alkaline phosphate buffer (Figure 3d). A more moderate 

change in the absorption spectra was observed in MeOH and DMSO (see supplementary 

data) indicating a ground state deprotonation of the pyrimidine triazole scaffold.

The click adduct 20 of the 2-azidoadenosine 19 and DBCO exhibited the highest 

fluorescence quantum yield (10.6%), the largest stokes shift (133 nm) and was the brightest 

(1.74 M−1cm−1) of the library of compounds that were prepared and tested. The 2-

adenosine-OCT adduct 18 was the second brightest compound (0.38 M−1cm−1) and 

exhibited the second largest extinction coefficient (Table 1).

The effect of solvent polarity was explored for derivatives 7, 8, 11, 13, 17, 18, 20, 23 and 27 
in DMSO and phosphate buffer pH 7.0. We observed a 10 nm and 17 nm bathochromic shift 

for 11 and 20 upon increasing solvent polarity (from DMSO to phosphate buffer at pH 7.0). 

Compound 23 showed a more complex spectra upon increase in solvent polarity, with peaks 

at 324 nm and 440 nm undergoing bathochromic shifts of 10 nm and 5 nm. This 

uncorrelated shift in emission likely arises from multiple glycosyl bond conformers of 23 
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(syn vs. anti) which are known to exhibit different photophysical properties.79,80 The 

amplitude of the fluorescence emission was increased in DMSO for the uracil analogues, 

when compared to the intensity in MeOH and phosphate buffer. On the other hand, the 

intensity of the adenine derivatives was enhanced in MeOH and quenched in phosphate 

buffer, with exception of analogues 7 and 13 which were enhanced in DMSO (Figure S1 in 

SI section). The observed increase in fluorescence intensity in an aprotic solvent (i.e. 

DMSO) for the uracil derivatives correlates with the observed ground state deprotonation of 

the uracil triazole moiety. The solvent effect on 7 and 11 show distinct responses despite 

their similar scaffolds, indicating that removal of the hydroxyl group at the C2′ likely 

induces a change in electron delocalization. Furthermore, introduction of a triazole ring at 

either the C2 or C8 positions likely causes a significant change in conformation (anti vs. 

syn) thus changing the solvent sensitivity of the fluorophore, as shown by the OCT adducts 

7 and 18 and by the DBCO adducts 13 and 20.

All triazole products showed a complex fluorescence decay lifetime, with at least a triple 

discrete model needed to obtain a satisfactory fit (Figure 3), except analogue 8 which 

showed a biphasic decay. A fast lifetime of 0.1 ns to 0.6 ns was present in all compounds 

(Table 1). This fast decay is likely due to the fluorescence decay of the heterocyclic bases. In 

addition, 0.8 ns – 2.3 ns and 4.1 ns – 7.8 ns lifetime was recovered for all compounds, with 

26 showing the longest lifetime (7.8 ns). The fractional contribution of each lifetime also 

varied among all triazole products; however, 11 (19%), 20 (40%) and 23 (38%) showed the 

largest contribution of the long lifetime (τ3). The longest average lifetime was observed for 

20 (2.8 ns), followed by 23 (2.7 ns), 26 (2.7 ns) and 11 (1.6 ns). The recovered average 

fluorescence lifetime of the most fluorescent compounds is comparable to the lifetimes of 

current fluorescent proteins widely used in fluorescence lifetime imaging (FLIM),81 and the 

utility of these fluorescent nucleoside analogs as probes in FLIM for real time measuring of 

metabolic activity inside living cells is discussed below.

Cytotoxicity Assay

Taking advantage that the click reaction between non-fluorescent azido nucleosides and 

cyclooctynes yields triazole products with strong fluorescence without the necessity for 

additional modification for visualization, we have tested its application to in vivo studies and 

have demonstrated the viability of these reactions in living cells. A cell toxicity assay was 

used to determine the non-toxic dose of azides 2 or 21 and cyclooctyne 5 on the survival of 

MCF-7 cells cultured for a 24 h time period. Under these conditions MCF-7 cells were 

subjected to the MTT assay that measured the ability of cells to reduce the 

methylthiazoletetrazolium dye. We measured activity of MCF-7 cells at the most active part 

of the cells growth phase which was at 50% cell confluency, 24 h after seeding. The y-axis 

of the dose-response graph represents cell viability correlated to metabolic activity. From the 

dose-response graph for the reaction between cyclooctyne 5 and either azide 2 or 21, we 

determined that a 1 μM dosage of these reagents was non-cytotoxic to MCF-7 cells for a 24 

h exposure (Figure 4) and, consequently, we utilized this dosage for subsequent fluorescent 

studies.
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Cellular Permeability

A parallel artificial membrane permeation assay (PAMPA)82 was used to predict cellular 

permeability of selected azides 2, 4, 19 and 23 and triazole adducts 11 and 20. A correlation 

between drug permeation across an alkane liquid membrane and percent absorption in 

humans has previously been shown, thus, a PAMPA assay provides an accurate model in 

depicting the passive absorption of the tested compounds across a cellular membrane.83–86 

The results showed that approximately 20% of each of the compounds tested passively 

permeated in through the cellular membrane and into the cells (Table 2). However, since 

nucleoside transport proteins are also responsible for the cellular uptake of natural and 

modified nucleosides,87 one can expect that the membrane proteins might also contribute to 

the overall uptake of these nucleoside-based theranostics.

In Vivo Images

The click chemistry between 8-azido-arabino-Ado 2 and cyclooctyne 5 was carried out in 

MCF-7 breast cancer cells. Thus, MCF-7 cells were incubated for 3 h at 37 °C with 2 (1 

μM). The click reaction commenced via the addition of DMEM/F12 (1:1) 1X cell media 

containing cyclooctyne 5 (1 μM). We observed strong blue fluorescence in live cells using 

excitation and absorbance filters 360/40 and 470/40 nm, respectively (Figure 5) which was 

comparable to the fluorescence that Ito et al. observed during the reaction of 8-azido-cAMP 

and a difluorinated cyclooctyne in HeLa cells.46 However, contrary to this report, we found 

that the use of transfection agents (e.g., Lipofectamine, see SI section for discussion), which 

often results in cytosol fluorescence, undue stress, and morphological changes in cells, was 

unnecessary.

In our negative controls, background fluorescence was indistinguishable in cells incubated 

without azide 2 or cyclooctyne 5. Using a trypan blue fluorescence quenching mechanism,88 

we also concluded that fluorescence was intracellular and not due to the click reaction 

occurring on the surface of the cell membrane. As shown in Figure 5, the 1 μM dose of 

compounds 2 and 5 showed a strong fluorescent localization to the nucleus. Similarly, in 

Figures 6 and 7, the 1 μM dose of azides 19 or 21 and 5 also showed fluorescence localized 

in the nucleus.

Fluorescence Lifetime Imaging Microscopy

In order to determine fluorescence lifetime within living cells, the frequency-domain 

fluorescence lifetime imaging microscopy (FD-FLIM) was conducted on MCF-7 cells 

incubated with the triazole products 8, 20 or 23. The FD-FLIM is an imaging technique 

capable of image acquisition rates that are compatible with in vivo imaging, while also 

offering a means to visualize the individual lifetime components of a sample (i.e. the polar 

plot histogram).89 This technique allows one to compare the lifetime characteristics, τ value, 

of compounds in vitro and in vivo.

After incubation of MCF-7 cells with triazoles 8, 20 or 23, the fluorescent signal from cell 

nuclei were isolated for lifetime measurement and the average lifetime from multiple cells 

were calculated for each compound (Table 3, Figure 8). The lifetime value obtained for 

arabino triazole adduct 8 was much higher in vivo (2.66 ns) than that found in vitro (1.60 ns; 
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Table 1). This discrepancy in lifetimes suggests that in a methanol solution 8 can exists in 

two conformations (syn and anti) which populates the fast lifetime (0.6 ns). We also found 

that the mean lifetime of triazole 8 was not altered when 8 had been synthesized by an in 
vivo click reaction between azide 2 and cyclooctynes 5 in MCF-7 cells (Table 3, footnote a).

The values for click adducts 20 (2.66 ns) and 23 (2.73 ns) were similar to those obtained 

through spectroscopic methods (see Table 1), although slightly lower. Polar plot analysis 

reveals that adduct 20 maintains its individual lifetime components (Figure 8), suggesting 

that the conformation found in vitro is also present in vivo. We believe that this can be 

attributed to steric hindrance and the size of the bulky DBCO component. The histogram for 

adduct 23 indicates that its lifetime components undergo an alteration in vivo and in 

actuality only 1 lifetime population is observed. As shown in Figure 3d and in the SI data, 

this compound is the most sensitive of all the compounds tested to pH and solvent polarity 

thus it is not entirely surprising to see differences between fluorescence lifetimes in vitro and 

within living cells. In addition to featuring a different solvent, the intranuclear environment 

may introduce a higher pH90 or π-orbital stacking when compounds are DNA-bound, both 

of which can alter the fluorescence lifetime characteristics of a given compound.91,92

Although the lifetime properties of 8 and 23 change slightly within cells compared to in 
vitro determination, we found that their intracellular lifetimes are also relatively consistent 

from cell to cell and thus prove unambiguously the presence of 8, 20 and 23 within the 

nucleus. Therefore, all three compounds can serve as viable fluorescent probes in vivo, with 

adduct 20 being the compound of choice when low environmental sensitivity (i.e. lifetime 

invariance) is desired.

The present in situ click chemistry drug delivery system represents a novel approach 

wherein both a therapeutic effect and drug uptake-related imaging information may be 

produced and readily monitored at the cellular level. Although it’s beyond the scope of this 

paper, the long-term implications of this in situ click chemistry drug delivery strategy 

embodied in click substrates (e.g., 2, 19 and 21) could allow for a more precise monitoring 

of dosage levels, as well as an improved understanding of cellular uptake. It is also 

noteworthy that our nucleobase-derived triazole adducts can be visualized using fluorescent 

microscopy and FLIM without reliance on auxiliary fluorescent reporters such as green-

fluorescent proteins93 or Alexa Fluor.14

CONCLUSIONS

We have developed an efficient strain-promoted click chemistry between 2- or 8-

azidoadenine and 5-azidouracil nucleosides as well as 8-azidoadenosine triphosphate with 

various cyclooctynes to produce highly functionalized triazole products. The reactions occur 

in cell culture media or aqueous organic solution at ambient temperature without the 

assistance of copper and/or microwave heating. We discovered that 5-azidouridine substrates 

were significantly more reactive than the 2- or 8-azidoadenosine precursors, whereas the 

position of the azido group on the adenine scaffold did not affect reactivity of adenosine 

substrates. We found that the novel triazole products have sufficient fluorescent properties 

which were used for direct imaging in living MCF-7 cancer cells without the need of any 
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extra fluorophores. Using fluorescence lifetime imaging (FLIM) of living cancer cells, we 

have demonstrated, for the first time, the potential utility of triazole modified nucleobases 

for dynamic measuring and tracking of signaling events inside single living cells.

EXPERIMENTAL PROCEDURES

Materials and General Methods—Detailed methods and characterization can be found 

in the Supporting Information. The 1H (400 MHz), 19F NMR (376.4 MHz) and 13C (100.6 

MHz) were recorded at ambient temperature in solutions of ACN-d3, D2O, or DMSO-d6, as 

noted. The reactions were followed by TLC with Merck Kieselgel 60-F254 sheets, and 

products were detected with a 254 nm light. Column chromatography was performed using 

Merck Kieselgel 60 (230–400 mesh). Reagent-grade chemicals were used. Azido nucleoside 

substrates were prepared as described in literature (1,59 2,61 4,62 and 2270) or in SI section 

(3), or are commercially available (19, 21 and 28) from Carbosynth. Cyclooctynes 5, 6, 12 
and 16 are commercially available from Kerafast, SynAffix, Sigma Aldrich or Berry & 

Associates. Lipofectamine LTX and Plus reagent was purchased from Invitrogen. HPLC 

analysis was performed on a semi-preparative Phenomenex Gemini RP-C18 column (5 μ, 25 

cm × 1 cm) with UV detection at 254 nm.

Synthetic Procedures

8-(1,2,3-Triazol-1H-yl)adenosine-OCT adduct (7). Typical Procedure—
Cyclooctyne 5 (endo; 7.6 mg, 0.05 mmol) was added to a stirred solution of 8-

azidoadenosine59 1 (15.0 mg, 0.05 mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient 

temperature. After 3 h, the volatiles were evaporated in vacuo and the resulting residue was 

purified on silica gel column chromatography (20% MeOH/EtOAc) to give 7 as mixture of 

regioisomers (1:1; 21.0 mg, 96%) as a white solid. Alternatively the crude reaction mixture 

was passed through a 0.2 μm PTFE syringe filter, and then purified on the semipreparative 

HPLC column (17% ACN/H2O, 2.0 mL/min) to give 7 (1:1; 21.0 mg, 96%) as a white solid 

(tR = 4.5–8.2 min): UV λmax 270 nm (ε 21 100), λmin 241 nm (ε 12 100); 1H NMR (DMSO-

d6) δ 0.84–0.95 (m, 2H, Hγ), 0.99 (“q”, J = 9.4 Hz, 0.5H, CH cyclopropyl), 1.00 (q, J = 9.4 

Hz, 0.5H, CH cyclopropyl), 1.51–1.74 (m, 2H, Hβ), 2.00–2.19 (m, 2H, Hβ), 2.57–2.67 (m, 

1H, Hα), 2.77–2.87 (m, 1H, Hα), 2.87–2.99 (m, 1H, Hα), 3.09– 3.15 (m, 1H, Hα), 3.42–

3.53 (m, 3H, CH2 & H5′), 3.58 (“dq” J = 12.2, 4.2 Hz, 1H, H5″), 3.85–3.93 (m, 1H, H4′), 

4.00–4.07 (m, 1H, H3′), 4.35 (t, J = 4.9 Hz, 1H, OH), 4.93 (“q”, J = 5.2 Hz, 0.5H, H2′), 5.00 

(“q”, J = 5.2 Hz, 0.5H, H2′), 5.12–5.23 (m, 2H, H1′ & OH), 5.36–5.52 (m, 2H, 2 x OH), 

7.78 (br s, 2H, NH2), 8.23 (s, 1H, H2); 13C NMR (CD3CN) δ 18.44, 18.58, 18.62, 20.14, 

20.22, 20.82, 20.88, 21.21, 21.30, 22.33, 22.44, 25.04, 58.02, 58.81, 62.08, 69.18, 70.83, 

71.01, 72.39, 72.44, 72.56, 86.96, 87.05, 89.39, 90.92, 138.39, 138.42, 138.47, 144.87, 

144.93, 148.52, 152.01, 153.35, 156.31; HRMS (ESI+) m/z calcd C20H27N9O5 (M+H)+: 

459.2054, found: 459.2050

Note: Analogous treatment of 1 (7.0 mg, 0.023 mmol) with 5 (4.7:1, exo-endo; 3.4 mg, 

0.023 mmol) also gave 7 (~1:1; 10.0 mg, 96%).
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9-(β-D-Arabinofuranosyl)-8-(1,2,3-triazol-1H-yl)adenine-OCT adduct (8)—
Cyclooctyne 5 (4.7:1, exo-endo; 4.9 mg, 0.02 mmol) was added to a stirred solution of 261 

(10.0 mg, 0.02 mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient temperature. After 1 

h, the volatiles were evaporated in vacuo and the resulting residue was purified by column 

chromatography on silica gel (EtOAc → 20% MeOH/EtOAc) to give 8 as mixture of 

regioisomers (~1:1; 12.8 mg, 93%) as a white solid: UV λmax 273 nm (ε 17 500), λmin 248 

nm (ε 8700); 1H NMR (DMSO-d6) δ 0.83–0.96 (m, 2H, 2 x Hγ), 0.96–1.07 (m, 1H, CH 

cyclopropyl), 1.50–1.70 (m, 2H, 2 x Hβ), 2.01–2.19 (m, 2H, 2 x Hβ), 2.56–2.71 (m, 1H, 

Hα), 2.78–2.95 (m, 2H, 2 x Hα), 3.11 (“q”, J = 3.3 Hz, 0.5H, Hα), 3.15 (“q”, J = 3.6 Hz, 

0.5H, Hα), 3.46–3.53 (m, 1H, H5′), 3.58–3.66 (m, 3H, H5″ & CH2OH), 4.20 (q, 1H, J = 5.6 

Hz, H4′), 4.26–4.37 (m, 1H, H2′ & H3′), 5.08–5.15 (m, 1H, OH), 5.41 (br s, 1H, OH), 5.63–

5.67 (m, 1H, OH), 5.69 (d, J = 6.7 Hz, 0.5H, H1′), 5.71 (d, J = 6.8 Hz, 0.5, H1′), 7.61 (s, 2H, 

NH2), 8.23 (s, 1H, H2); 13C NMR (DMSO-d6) δ 13.34, 17.42, 17.49, 19.31, 19.84, 19.87, 

20.36, 20.38, 21.65, 24.12, 24.17, 30.09, 35.23, 56.57, 59.73, 73.17, 73.28, 75.17, 75.24, 

81.61, 81.69, 84.24, 84.27, 115.79, 137.15, 137.18, 137.42, 137.43, 143.29, 143.34, 148.43, 

152.46, 154.95, 162.35; HRMS (ESI+) m/z calcd C20H26N8NaO5 (M+Na)+: 481.1918, 

found: 481.1927.

9-(β-D-Arabinofuranosyl)-8-(1,2,3-triazol-1H-yl)adenine-OCT-biotin adduct (9)—
Cyclooctyne 6 (endo; 5.5 mg, 0.01 mmol) was added to a stirred solution of 2 (3.1 mg, 0.01 

mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient temperature. After 2 h (TLC 

showed complete conversion to the more polar product), the volatiles were evaporated in 
vacuo and the resulting residue was purified by HPLC (as described for 7) to give 9 (5.4 mg, 

71%) as a white oil: HRMS (ESI+) m/z calcd C20H26N8NaO5 (M+Na)+: 481.1918, found: 

481.1927.

9-(2-Deoxy-2-fluoro-β-D-arabinofuranosyl)-8-(1,2,3-triazol-1H-yl)adenine-OCT 
adduct (10)—Cyclooctyne 5 (exo:endo, 4.7:1; 3.7 mg, 0.025 mmol) was added to a stirred 

solution of 3 (7.6 mg, 0.025 mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient 

temperature. After 3 h (TLC and NMR showed complete conversion of 3 to 10) the volatiles 

were evaporated in vacuo to give 10 as mixture of regioisomers (~1:1; 11 mg, 98%) as a 

white solid: 1H NMR (DMSO-d6) δ 0.84–0.97 (m, 2H, 2 x Hγ), 0.98–1.07 (m, 1H, CH 

cyclopropyl), 1.52–1.71 (m, 2H, 2 x Hβ), 2.00–2.19 (m, 2H, 2 x Hβ), 2.56–2.72 (m, 1H, 

Hα), 2.73–2.95 (m, 2H, 2 x Hα), 3.09–3.16 (m, 1H, Hα), 3.46–3.53 (m, 2H, CH2OH), 3.54–

3.67 (m, 2H, H5′ & H5″), 3.69–3.75 (m, 1H, OH), 4.31–4.38 (m, 1H, OH), 4.63–4.77 (m, 

1H, H4′), 5.06–5.12 (m, 1H, H3′), 5.23 (dt, J = 53.9, 5.7 Hz, H2′), 5.86–5.95 (m, 2H, H1′ & 

OH), 7.00 (br s, 2H, NH2), 8.27 (s, 0.5H, H2), 8.28 (s, 0.5H, H2); 19F NMR (DMSO-d6) δ 

−198.52 (ddd, J = 53.9, 21.4, 8.2 Hz, 0.5F), −199.01 (ddd, J = 53.9, 21.5, 7.3 Hz, 0.5F); 

HRMS (ESI+) m/z calcd C20H26FN8O4 (M+H)+: 461.2056, found: 461.2059.

2′-Deoxy-8-(1,2,3-triazol-1H-yl)adenosine-OCT adduct (11)—Cyclooctyne 5 (endo; 

15.7 mg, 0.1 mmol) was added to a stirred solution of 462 (29.5 mg, 0.1 mmol) in a mixture 

of ACN/H2O (3:1, 1 mL) at ambient temperature. After 3 h, the crude reaction mixture was 

passed through a 0.2 μm PTFE syringe filter, and then purified on the semipreparative HPLC 

column (17% ACN/H2O, 2.0 mL/min) to give 11 as mixture of regioisomers (1:1; 49.3 mg, 
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96%) as a white solid (tR = 13.0–16.2 min): UV λmax 272 nm (ε 18 200), λmin 238 nm (ε 

8500); 1H NMR (DMSO-d6) 0.82–0.95 (m, 2H, 2 x Hγ), 0.96–1.07 (m, 1H, CH 

cyclopropyl), 1.53–1.72 (m, 2H, 2 x Hβ), 2.03–2.19 (m, 3H, H2′ & 2 x Hβ′), 2.60–2.72 (m, 

2H, 2 x Hα), 2.81–2.97 (m, 2H, 2 x Hα), 3.03–3.18 (m, 3H, H2″ & 2 x Hα), 3.37–3.45 (m, 

1H, H5′), 3.47–3.59 (m, 3H, H5′ & CH2OH), 3.76–3.82 (m, 1H, H4′), 4.30–4.37 (m, 2H, 

H3′ & OH), 5.26 (d, J = 4.0 Hz, 1H, OH), 5.27–5.34 (m, 1H, OH), 5.71 (dd, J = 6.4, 3.1 Hz, 

0.5H, H1′), 5.73 (dd, J = 6.4, 3.2 Hz, 0.5H, H1′), 7.72 (br s, 2H, NH2), 8.26 (s, 1H, H2); 

HRMS (ESI+) m/z calcd C20H27N8O4 (M+H)+: 443.2150, found: 443.2142.

8-(1,2,3-Triazol-1H-yl)adenosine-DBCO adduct (13)—Cyclooctyne 12 (15.0 mg, 

0.055 mmol) was added to a stirred solution of 1 (16.4 mg, 0.055 mmol) in a mixture of 

ACN/H2O (3:1, 1.5 mL) at 50 °C. After 16 h, the crude reaction mixture was passed through 

a 0.2 μm PTFE syringe filter, and then injected into a semipreparative HPLC column (40% 

ACN/H2O 1.0 mL/min) to give 13 (10.6 mg, 98%) as a mixture of several inseparable 

regioisomers (tR = 15.5–23.0 min): UV λmax 276 nm (ε 16 000), λsh 307 nm (ε 11 200), λmin 

270 nm (ε 14 500). Two major isomers (~85–90% of total isomeric composition) had: 1H 

NMR (DMSO-d6) δ 1.64–1.78 (m, 2H, NH2), 2.08–2.33 (m, 2H, CH2CO), 2.67–2.81 (m, 

2H, CH2NH2), 3.31–4.18 (m, 4H, H3′, H4′, H5′ & H5″), 4.59 (“dm”, J = 17.1 Hz, 1H, CH2), 

5.08–5.18 (m, 1H, H2′), 5.19–5.55 (m, 3H, 3 x OH), 5.72 (d, J = 7.5 Hz, 0.5H, H1′), 5.83 (d, 

J = 7.0 Hz, 0.5H, H1′), 5.96 (br d, J = 17.6 Hz, 1H, CH2), 6.09 (br d, J = 17.4 Hz, 1H, CH2), 

7.26–7.56 (m, 8H, Har), 8.25 (s, 0.5H, H2), 8.28 (s, 0.5H, H2); HRMS (ESI+) m/z calcd 

C28H29N10O5 (M+H)+: 585.2317, found: 585.2330.

9-(β-D-Arabinofuranosyl)-8-(1,2,3-triazol-1H-yl)adenine-DBCO adduct (14)—
Cyclooctyne 12 (5.72 mg, 0.02 mmol) was added to a stirred solution of 2 (4.0 mg, 0.02 

mmol) in MeOH (1 mL) at 50 °C. After 16 h, the crude reaction mixture was passed through 

a 0.2 μm PTFE syringe filter, and then injected into a semipreparative HPLC column 

(Phenomenex Gemini RP-C18 column; 5 μ, 25 cm × 1 cm) (40% ACN/H2O, 1.5 mL/min) to 

give 14 (8.52 mg, 95%) as a mixture of several inseparable regioisomers (tR = 5.5–10.0 

min): 1H NMR (DMSO-d6) δ Two major isomers (~85–90% of total isomeric composition) 

had: 1H NMR (DMSO-d6) δ 1.42–1.78 (m, 2H, NH2), 2.01–2.17 (m, 2H, CH2CO), 2.60–

2.78 (m, 2H, CH2NH2), 3.17–3.24 (m, 2H, H4′ & H5′), 3.28 (dd, J = 11.5 Hz, 4.6 Hz, 1H, 

H5″), 3.83–3.87 (m, 1H, H3′), 4.10 (t, J = 6.0 Hz, 0.5H, H2′), 4.11 (t, J = 5.9 Hz, 0.5H, H2′), 

4.49 (br s, 2H, CH2), 5.72 (d, J = 5.1 Hz, 1H, H1′), 7.26–7.56 (m, 8H, Har), 8.09 (s, 1H, H2); 

HRMS (ESI+) m/z calcd C28H29N10O5 (M+H)+: 585.2317, found: 585.2425.

2′-Deoxy-8-(1,2,3-triazol-1H-yl)adenosine-DBCO adduct (15)—Cyclooctyne 12 
(4.7 mg, 0.015 mmol) was added to a stirred solution of 4 (4.9 mg, 0.015 mmol) in MeOH 

(1.5 mL) at 50 °C. After 16 h, the crude reaction mixture was passed through a 0.2 μm PTFE 

syringe filter, and then injected into a semipreparative HPLC column (Phenomenex Gemini 

RP-C18 column; 5 μ, 25 cm × 1 cm (40% ACN/H2O, 2.0 mL/min) to give 15 (9.5 mg, 95%) 

as a mixture of several inseparable regioisomers (tR = 8.5–5.0 min): UV λmax 273 nm (ε 12 

550); 1H NMR (DMSO-d6) δ 1.64–1.81 (m, 2H, NH2), 2.11–2.15 (m, 1H, H2′), 2.15–2.30 

(m, 2H, CH2CO), 2.60–2.79 (m, 2H, CH2NH2), 3.34–3.95 (m, 4H, H3′, H4′, H5′ & H5″), 

4.51–4.60 (m, 2H, CH2), 4.91 (dd, J = 5.8, 2.3 Hz, 1H, H2′), 5.18–5.48 (m, 3H, 3 x OH), 
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5.74 (d, J = 6.7 Hz, 0.5H, H1′), 5.76 (d, J = 6.2 Hz, 0.5H, H1′), 5.94 (br d, J = 15.8 Hz, 1H, 

CH2), 6.12 (br d, J = 16.4 Hz, 1H, CH2), (6.86–7.84 (m, 8H, Har), 8.4 (s, 0.5H, H2), 7.94 (s, 

0.5H, H2); HRMS (ESI+) m/z calcd C28H29N10O4 (M+H)+: 569.2368, found: 569.2411.

8-(1,2,3-Triazol-1H-yl)adenosine-MFCO adduct (17)—Cyclooctyne 16 (6.25 mg, 

0.02 mmol) was added to a stirred solution of 1 (6.25 mg, 0.02 mmol) in MeOH (1 mL) at 

ambient temperature. After 16 h, the volatiles were evaporated in vacuo to give cycloadduct 

17 (1:1; 12.3 mg, 98%) as a clear oil: UV λmax 271 nm (ε 16 400), λmin 242 nm (ε 8000); 1H 

NMR (DMSO-d6/D2O) δ 1.43–1.50 (m, 6H, 3 x CH2), 1.56–1.67 (m, 4H, 2 x CH2), 1.67–

1.75 (m, 2H, CH2), 2.23–2.34 (m, 2H, CH2), 2.54–2.60 (m, 2H, CH2), 2.60–2.67 (m, 2H, 

CH2), 2.76–2.82 (br s, 4H, 2 x CH2), 3.04–3.13 (m, 2H, CH2), 3.45 (“dd”, J =, 10.8, 2.3 Hz, 

1H, H5′), 3.51 (“dd”, J = 2.2 Hz, 10.9 Hz, 1H, H5″), 3.87–3.90 (m, 0.5H, H4′), 3.91–3.95 

(m, 0.5H, H4′), 4.03 (m, 0.5H, H3′), 4.09 (m, 0.5H, H3′), 4.97 (t, J = 4.9 Hz, 0.5H, H2′), 

4.98 (t, J = 5.1 Hz, 0.5H, H2′), 5.27 (d, J = 7.0 Hz, 0.5 H, H1′), 5.28 (d, J = 7.1 Hz, 0.5 H, 

H1′), 8.27 (s, 0.5H, H2), 8.28 (s, 0.5H, H2); HRMS (ESI+) m/z calcd C29H37FN10NaO9 (M

+Na)+: 711.2621, found: 711.2543.

2-(1,2,3-Triazol-1H-yl)adenosine-OCT adduct (18)—Cyclooctyne 5 (4.7:1 exo-endo 
mixture; 3.13 mg, 0.020 mmol) was added to a stirred solution of 2-azidoadenosine94 19 
(6.25 mg, 0.020 mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient temperature. After 

2 h, the volatiles were evaporated in vacuo to give 18 (9.3 mg, 100%) as a white solid: UV 

λmax 261 nm (ε 19 100), λmin 246 nm (ε 16 600); 1H NMR (DMSO-d6) δ 0.81–0.89 (m, 2H, 

2 x Hγ), 0.94–1.04 (m, 1H, CH cyclopropyl), 1.56–1.72 (m, 2H, 2 x Hβ), 2.06–2.22 (m, 2 H, 

2 x Hβ), 2.81–2.90 (m, 1H, Hα), 2.99–3.14 (m, 2H, 2 x Hα), 3.15–3.19 (m, 1H, Hα), 3.44–

3.58 (m, 3H, H5′ & CH2), 3.59–3.69 (m, 1H, H5′), 4.11–4.16 (m, 1H, H4′), 4.35 (t, J = 5.0 

Hz, 1H, H3′), 4.59 (“quint”, J = 6.0 Hz, 1H, H2′), 4.99–5.04 (m, 1H, OH), 5.21 (d, J = 4.9 

Hz, 1H, OH), 5.45–5.53 (m, 2H, 2 x OH), 5.89 (d, J = 5.8 Hz, 1H, H1′), 7.89 (br s, 2H, 

NH2), 8.52 (s, 1H, H8); HRMS (ESI+) m/z calcd C20H27N9O5 (M+H)+: 459.2099, found: 

459.2098.

2-(1,2,3-Triazol-1H-yl)adenosine-DBCO adduct (20)—Cyclooctyne 12 (9.67 mg, 

0.035 mmol) was added to a stirred solution of 19 (10.93 mg, 0.035 mmol) in MeOH (1 mL) 

at ambient temperature. After 16 h, the volatiles were evaporated in vacuo and the residue 

was passed through a 0.2 μm PTFE syringe filter, and then purified on the semipreparative 

HPLC column (17% ACN/H2O, 2.0 mL/min) to give 20 (17.5 mg, 85%) as a mixture of 

several inseparable isomers (tR = 13.0–16.2 min): UV λmax 263 nm (ε 16 400), λsh 274 nm 

(ε 9 600), λmin 253 nm (ε 15 200); Two major isomers (~85–90% of total isomeric 

composition) had: 1H NMR (DMSO-d6) δ 1.58–1.62 (m, 2H, NH2), 2.03–2.09 (m, 2H, 

CH2CO), 2.57–2.72 (m, 2H, CH2NH2), 3.49–3.50 (m, 1H, H5′), 3.69 (dd, J = 11.8 Hz & 3.3 

Hz, 1H, H5″), 3.83–3.94 (m, 1H, H4′), 4.07–4.16 (m, 1H, H3′), 4.38 (t, J = 5.1 Hz, 0.5H, 

H2′), 4.44 (t, J = 5.0 Hz, 0.5H, H2′), 4.53 (“dm”, J = 17.0 Hz, 1H, CH2), 4.86–5.47 (m, 3H, 

3 x OH), 5.67 (d, J = 7.1 Hz, 0.5H, H1′), 5.82 (d, J = 7.2 Hz, 0.5H, H1′), 5.96 (br d, J = 19.7 

Hz, 2H, CH2), 7.06–7.52 (m, 8H, Har), 8.54 (s, 0.5H, H8), 8.55 (s, 0.5H, H8); HRMS (ESI+) 

m/z calcd C28H29N10O5 (M+H)+: 585.2317, found: 585.2318.
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5-(1,2,3-Triazol-1H-yl)uridine-OCT adduct (23)—Cyclooctyne 5 (4.0 mg, 0.025 

mmol) was added to a stirred solution of 5-azidouridine 21 (7.3 mg, 0.025 mmol) in a 

mixture of ACN/H2O (3:1, 1 mL) at ambient temperature. After 15 min, the volatiles were 

evaporated in vacuo, and the oily residue was passed through a 0.2 μm PTFE syringe filter, 

and then purified on the semipreparative HPLC column (20% ACN/H2O, 2.0 mL/min; tR = 

5.2 – 8.0 min) to give 23 (6.2 mg, 77%) as a 1:1 mixture of isomers: UV λmax 270 nm (ε 10 

100) λmin 248 nm (ε 6 800); 1H NMR (DMSO-d6) δ 0.85–0.93 (m, 2H, 2 x Hγ), 0.95–1.02 

(m, 1H, CH cyclopropyl), 1.46–1.56 (m, 2H, 2 x Hβ), 1.99–2.14 (m, 2H, 2 x Hβ), 2.72–2.83 

(m, 2H, 2 x Hα), 3.00–3.04 (m, 0.5H, Hα), 3.05–3.08 (m, 0.5H, Hα), 3.16–3.18 (d, J = 5.2 

Hz, 1H, Hα), 3.50 (dd, J = 2.5, 12.0 Hz, 1H, H5′), 3.59–3.62 (m, 1H, H5′), 3.85–3.89 (m, 

1H, H4′), 3.95–4.01 (m, 1H, H3′), 4.10 (“q”, J = 4.6 Hz, 1H, H2′), 4.36 (t, J = 4.9Hz, 1H, 

OH), 5.09–5.14 (m, 2H, 2 x OH), 5.51–5.55 (m, 1H, OH), 5.78 (d, J = 4.0 Hz, 0.5H, H1′), 

5.79 (d, J = 3.9 Hz, 0.5H, H1′), 8.52 (s, 0.5H, H2), 8.53 (s, 0.5H, H2); HRMS (ESI+) m/z 

calcd C19H27N5O7 (M+H)+: 436.1827, found: 436.1829.

5-(1,2,3-Triazol-1H-yl)uridine-biotin adduct (24)—Cyclooctyne 6 (11.0 mg, 0.02 

mmol) was added to a stirred solution of 5-azidouridine 21 (5.6 mg, 0.02 mmol) in a mixture 

of ACN/H2O (3:1, 1 mL) at ambient temperature. After 3 min, the volatiles were evaporated 

in vacuo to give cycloadduct 24 (16.0 mg, 98%) as a white solid: HRMS (ESI+) m/z calcd 

C36H53N9O12S (M+H)+: 836.3607, found: 836.3562.

2′-Deoxy-8-(1,2,3-triazol-1H-yl)uridine-OCT adduct (25)—Cyclooctyne 5 (4.7:1 

exo-endo mixture; 14.3 mg, 0.1 mmol) was added to a stirred solution of 2270 (26.7 mg, 0.1 

mmol) in a mixture of ACN/H2O/MeOH (3:1:1, 1 mL) at ambient temperature. After 15 

min, the volatiles were evaporated in vacuo to give cycloadduct 25 as mixture of isomers 

(~1:1; 15.3 mg, 100%) as a white solid: 1H NMR (DMSO-d6) δ 0.83–0.94 (m, 2H, 2 x Hγ), 

0.95–1.05 (m, 1H, CH cyclopropyl), 1.42–1.59 (m, 2H, 2 x Hβ), 1.98–2.14 (m, 2H, 2 x Hβ), 

2.20 (“t”, J = 5.2 Hz, 2H, H2′ & H2′), 2.46–2.56 (m, 1H, Hα), 2.70–2.83 (m, 2H, 2 x Hα), 

3.00–3.05 (m, 0.5H, Hα), 3.05–3.09 (m, 0.5H, Hα), 3.44–3.54 (m, 3H, H5′ & CH2), 3.54–

3.61 (m, 1H, H5″), 3.80 (q, J = 3.2 Hz, 1H, H4′), 4.17–4.26 (m, 1H, H3′), 4.34 (m, 1H, OH), 

5.02 (m, 1H, OH), 5.28 (m, 1H, OH), 6.15 (t, J = 6.3 Hz, 0.5H, H1′), 6.16 (t, J = 6.3 Hz, 

0.5H, H1′), 8.43 (s, 0.5H, H6), 8.44 (s, 0.5H, H6); HRMS (ESI+) m/z calcd C19H26N5O6 (M

+H)+: 420.1878, found: 420.1878.

5-(1,2,3-Triazol-1H-yl)uridine-DBCO adduct (26)—Cyclooctyne 12 (5.6 mg, 0.02 

mmol) was added to a stirred solution of 21 (5.5 mg, 0.02 mmol) in MeOH (1 mL) at 

ambient temperature. After 15 min, the volatiles were evaporated in vacuo and the residue 

was passed through a 0.2 μm PTFE syringe filter, and then injected into a semipreparative 

HPLC column (40% ACN/H2O, 1.0 mL/min; tR = 7.0–12.0 min) to give 26 as an 

inseparable mixture of isomers (5.1 mg, 77%): UV λmax 276 nm (ε 7300), 291 nm (ε 7100), 

λsh 309 nm (ε 5400), λmin 265 nm (ε 6750), 283 nm (ε 7000), 303 nm (ε 5000); HRMS 

(ESI+) m/z calcd C27H28N9O7 (M+H)+: 562.2045, found: 526.2040.

5-(1,2,3-Triazol-1H-yl)uridine-MFCO adduct (27)—Cyclooctyne 16 (7.6 mg, 0.02 

mmol) was added to a stirred solution of 5-azidouridine 21 (5.6 mg, 0.02 mmol) in MeOH (1 
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mL) at ambient temperature. After 12 min, the volatiles were evaporated in vacuo to give 

complete conversion to cycloadduct 27 as mixture of regioisomers (1:1; 12.9 mg, 100%) as a 

white solid: UV λmax 269 nm (ε 7100), λmin 244 nm (ε 5000); 1H NMR (DMSO-d6) δ 1.40–

1.50 (m, 6H, 3 x CH2), 1.73–1.81 (m, 2H, CH2), 2.27–2.34 (m, 2H, CH2), 1.57–1.67 (m, 6H, 

3 x CH2), 2.48–2.53 (m, 2H, CH2), 2.62–2.69 (m, 2H, CH2), 2.78–2.86 (s, 4H, 2 x CH2), 

3.01–3.13 (m, 2H, CH2), 3.47–3.54 (m, 1H, H5′), 3.60–3.65 (m, 1H, H5″), 3.94–3.99 (m, 

1H, H4′), 4.08–4.15 (m, 1H, H3′), 4.27–4.36 (m, 1H, H2′), 5.06–5.11 (m, 2H, OH (2′) & 

OH (3′)), 5.51 (t, J = 6.7 Hz, 1H, OH (5′)), 5.78 (d, J = 4.9 Hz, 0.5 H, H1′), 5.79 (d, J = 4.6 

Hz, 0.5 H, H1′), 8.57 (s, 1H, H6); HRMS (ESI+) m/z calcd C28H36FN7O11 (M+H)+: 

666.2530, found: 666.2518.

8-(1,2,3-Triazol-1H-yl)adenosine-OCT adduct triphosphate (29)—Cyclooctyne 5 
(5.6 mg, 0.01 mmol) was added to a stirred solution of 8-azidoadenosine 5′-triphosphate 

tetralithium salt 28 (3.2 mg, 0.01 mmol) in a mixture of ACN/H2O (3:1, 1 mL) at ambient 

temperature. After 2 h, the volatiles were evaporated in vacuo to give 29 (3.2 mg, 92%) as a 

1:1 mixture of regioisomers: 1H NMR (ACN-d3/D2O) δ 0.80–0.88 (m, 2H, 2 x Hγ), 0.95–

1.06 (m, 1H, CH cyclopropyl), 1.46–1.6 (m, 2H, 2 x Hβ), 2.06–2.28 (m, 2H, 2 x Hβ), 2.62–

2.74 (m, 1H, Hα), 2.82–3.00 (m, 2H, 2 x Hα), 3.11–3.21 (m, 1H, Hα), 3.56–3.64 (m, 4H, 

H5′, H5′ & CH2), 4.17–4.32 (m, 2H, H3′ & H4′), 4.89 (t, J = 5.8 Hz, 0.5H, H2′), 4.97 (t. J = 
5.7 Hz, 0.5H, H2′), 5.47 (d, J = 5.6 Hz, 0.5H, H1′), 5.51 (d, J = 5.5 Hz, 0.5H, H1′), 8.32 (s, 

0.5H, H2), 8.33 (s, 0.5H, H2); HRMS (ESI−) m/z calcd C20H28N8O14P3 (M+H)−: 697.0943, 

found: 697.0962.

Photophysical Characterization

The fluorescent properties of the triazole products were determined using samples of varying 

concentration but whose absorbance at the excitation wavelength did not exceed 0.1 

absorbance units. For determination of ΦF the absorbance was kept below 0.06 and quinine 

sulfate in 100 mM sulfuric acid was used as reference standard (ΦF = 0.55).95 All samples 

were prepared in HPLC grade MeOH or DMSO and in freshly prepared 50 mM phosphate 

buffer, and placed in a 2 × 10 mm quartz cuvette at 18 °C. Absorption spectra were 

measured using a single beam UV–Vis spectrophotometer. Steady-state excitation and 

emission spectra were measured on a PC1 spectrofluorometer with bandwidth and slit width 

for excitation/emission set at 2 nm. Frequency-domain fluorescence lifetime measurements 

were performed using a ChronosFD spectrofluorometer. Samples were excited with a 

frequency modulated 280 nm LED and emission was collected using a 305 nm long pass 

filters (Andover); 2,5- Diphenyloxazole (PPO) solubilized in ethanol was used as a lifetime 

reference (τ =1.4 ns).96 Modulation-phase data were fitted by a multiple-exponential decay 

model using GlobalsWE software and the residual and χ2 parameter was used as criterion for 

goodness of fit.

MTT Assay

MCF-7 cells were seeded in 96-well plates at a density of 1 × 104 cells/mL and treated with 

different concentrations of azides 2 or 21 and cyclooctyne 5 for 24 h at 37 °C in a 5% CO2 

incubator. Methylthiazoletetrazolium (MTT) solution (5 mg/mL) was added to the assay 

mixture and incubated for 4 h. The culture media was removed prior to addition of DMSO. 
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The optical density of the solution was measured at 595 nm, using an absorbance microplate 

reader (Bio-Tek). Cells without the treatment of the compounds were used as the control. 

The cell viability percentage was calculated by the following formula: Cell viability 

percentage (%) = OD sample/OD control × 100%.

Cellular Permeability Measurements

Parallel artificial membrane permeability assay (PAMPA) was used to determine effective 

permeability coefficients Pe (centimeters per second), in a 96-well microtiter filter plates, on 

polycarbonate filter of 0.45 μm pore size, 10 μm thickness (Millipore AG, Volketswil, 

Switzerland), according to the procedure of Wohnsland and Faller.82

Each well was coated with 15 μL of lecitin (1% or 4% in dodecane solution) for 5 minutes 

avoiding pipette tip contact with the membrane. Compounds 2, 4, 11, 19, 20, and 23 were 

dissolved in 5% DMSO in PBS solution (75 μM) and were tested at least in triplicate. The 

solution of each compound (300 μL each) was added to each well of the donor plate. 

Aqueous buffer (PBS) (300 μL) was added to each well of the acceptor plate and then the 

donor plate was placed upon the acceptor plate. The resulting chamber was incubated at 

ambient temperature for 16 h at ambient temperature under gentle shaking. After incubation, 

it was carefully disassembled and each well of the acceptor plate was analyzed using UV-Vis 

for compound concentration. A solution of each compound at its theoretical equilibrium 

(i.e., the resulting concentration of the donor and acceptor phases were simply combined) 

was similarly analyzed. The effective permeability (Log Pe) was calculated from the 

equation as reported.82

Cell Microscopy Studies

Fluorescent Microscopy. Typical Procedure—The MCF-7 cells (5 × 105 cells/mL) 

were seeded in an eight chambered coverglass system (1.5 German borosilicate coverglass, 

Lab-Tek II) and incubated at 37 °C overnight in Dulbecco’s modified Eagle’s medium 

(DMEM/F12 (1:1) 1X, 1.5 ml) containing 5% fetal bovine serum (FBS). The 8-azido-9-(β-

D-arabinofuranosyl)adenine 2 in the reduced serum medium (1 μM) was added to the cells. 

After 4h, the cells were washed three times with fresh PBS (pH 7.5) media to remove any 

azide from the exterior portions of the cells. The cyclooctyne reagent 5 in reduced serum 

medium (1 μM) was then added to the medium and the cells were incubated at 37 °C for 16 

h. The cells were then washed three times with fresh PBS (pH 7.5) media to remove any 

click adduct from the exterior portions of the cells and observed with a DV ELITE-

microscope (Fisher Scientific) using excitation and absorbance filters were 360/40 and 

470/40 nm, respectively.

In the first negative control, the MCF-7 cells were just incubated with azide 2 without the 

cyclooctyne reagent added. In the second negative control, the MCF-7 cells were just 

incubated with cyclooctyne 5. Also, in the positive control the cells were treated with click 

adduct 11 dissolved in culture media. We used 0.1% trypan blue in the culture media before 

imaging the cells in DV ELITE microscope.

Note: In parallel experiments Lipofectamine LTX was used as liposome carrier.
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Fluorescent Lifetime Imaging Microscopy (FLIM). Typical Procedure—
Synthetically prepared triazole adduct 8, 20 or 23 as well as in vivo generated 8 [0.5 mL of 1 

μM solution in DMEM/F12 (1:1) 1X media] was added to MCF-7 cells (~50% cell 

confluency) cultured on slides mounted with 1-tissue culture well. After 24 h, the cells were 

washed twice with fresh (DMEM/F12 (1:1) 1X, 0.5 ml). The cells were then imaged at 

ambient temperature in fresh DMEM/F12 (~0.2 mL).

Ex vivo lifetime measurements were acquired using a custom-assembled frequency-domain 

upright FLIM system from Intelligent Imaging Innovations Inc. (3i). A continuous–wave 

excitation source (488 nm Argon laser) was modulated by a Pockels cell electro-optic 

modulator, which was synchronized with a Lambert Instruments II18MD gated image 

intensifier and CoolSnap EZ camera. A Yokogawa CSU-X1 spinning disk provided confocal 

scanning for fast image acquisition. A Zeiss W Plan-Apochromat 63x (n.a. 1.0) water-

immersion objective lens and a Semrock 520 emission filters with a Semrock Di10 

T488/568 diochroic were also used.

Image intensification was maintained at 2800 units across all experiments. Exposure times 

were set to acquire enough signal to span approximately 75% of the CCD’s dynamic range, 

however this time was never extended to more than 40 seconds (as such samples typically 

have low signal-to-noise. System calibration was performed with the fluorescent dye, 1-

hydroxypyrene-3,6,8-trisulfonate (HPTS), in solution (PBS at pH 7.5) for a standard lifetime 

of 5.4 ns. We found HPTS to be a reliable standard and superior to fluorescein, owing to its 

greater stability over time and pH shifts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

DBCO dibenzylcyclooctyne

FD-FLIM frequency domain fluorescence lifetime imaging

MFCO monofluorocyclooctyne

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OCT cyclopropyl cyclooctyne

ODNs oligodeoxynucleotides

SPAAC strain promoted click chemistry
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Figure 1. 
The kinetic profile of the SPAAC reaction of the equivalent amount of 8-azidoadenosine 1 
and cyclooctyne 5 in ACN-d6/D2O (3:1, v/v; 23 mM) as monitored by 1H NMR.
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Figure 2. 
The kinetic profile of the reaction between azidonucleotide 28 and cyclooctyne 5 in ACN-

d6/D2O (3:1, v/v; 6 mM) as monitored by 1H NMR.
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Figure 3. 
Normalized fluorescence emission, absorption and excitation spectra for the selected click 

adducts: a) 23, b) 11, and c) 20 in MeOH; (d) The pH effect on the excitation spectra of 23 
in phosphate buffer.
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Figure 4. 
Cellular viability of MCF-7 cells when exposed to the click reactions between azides 2 or 21 
and cyclooctyne 5.
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Figure 5. 
Fluorescence microscopy images and phase photos of live cells: (A) Phase photo of MCF-7 

cells after the reaction of azide 2 with cyclooctyne 5; (B) Fluorescent photo of the same 

MCF-7 cell; (C) Merged photo of panels (A) and (B). Scale = 20 μm
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Figure 6. 
Fluorescence microscopy images and phase photos of live cells: (A) Phase photo of MCF-7 

cells after the reaction of azide 19 with cyclooctyne 12; (B) Fluorescent photo of the same 

MCF-7 cell; (C) Merged photo of panels (A) and (B). Scale = 20 μm
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Figure 7. 
Fluorescence microscopy images and phase photos of live cells: (A) Phase photo of MCF-7 

cells after the reaction azide 21 with cyclooctyne 5; (B) Fluorescent photo of the same 

MCF-7 cell; (C) Merged photo of panels (A) and (B). Scale = 20 μm
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Figure 8. 
Representative images of fluorescence intensity (left column), fluorescence lifetime (middle 

column), and Polar Plot histogram (right column) for triazole adducts 8, 20 and 23 (1 μM) 

within MCF-7 cells. Fluorescence intensity images display an intensity range from 1.0 

(background intensity) to 2.0+ (2x background and greater). Fluorescence lifetime heat maps 

display lifetimes ranging from 2.0 ns (and below) in blue to 3.0 ns (and above) in red. Polar 

plot histograms depict the x,y coordinates [Mcos(ΦF), Msin(ΦF)] of pixels within nuclei 

(outlined in the corresponding lifetime image). Experimental component lifetimes are 

indicated on the semi-circle (green circles), as well as the group mean lifetime for the 

specific compound. aImages for 8 are for the triazole adduct synthesized using an in vivo 
click reaction.
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Scheme 1. 
Strain Promoted Click Chemistry of 8-Azidoadenine Nucleosides
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Scheme 2. 
Strain Promoted Click Chemistry of 8-Azidoadenine Nucleosides with Dibenzyl or 

Monofluoro Cyclooctyne
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Scheme 3. 
Strain Promoted Click Chemistry of 2-Azidoadenosine

Zayas et al. Page 32

Bioconjug Chem. Author manuscript; available in PMC 2016 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 4. 
Strain Promoted Click Chemistry of 5-Azidouridine and 5-Azido-2′-deoxyuridine
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Scheme 5. 
Strain Promoted Click Chemistry of 8-Azidoadenosine 5′-triphosphate 28
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Table 2

Cellular permeability data for the selected azides and triazole adduct.

Compound % Fraction Absorbed Log Pe (cm/s)a

2b 18 −0.5

4 20 −0.5

11 21 −0.3

19 22 −0.5

20 22 −0.03

23 20 −0.4

a
Log of the effective permeability coefficient, Pe (cm·s−1), as assessed by a parallel artificial membrane permeability assay (HDM-PAMPA) 

performed at 75 μM concentrations.

b
Permeability for 2 at a 150 μM concentration was also 18%.
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Table 3

Mean lifetime of nucleoside triazole adducts within MCF-7 cells as determined by Frequency-Domain 

Lifetime Imaging (FD-FLIM).

Compound Mean lifetime (ns) SD n (# nuclei) SEM

8 2.66 0.159 13 0.044

8a 2.61 0.103 11 0.031

20 2.66 0.102 16 0.026

23 2.73 0.093 14 0.025

a
Triazole adduct 8 synthesized by in vivo click reaction
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