370 research outputs found

    Laser applications in thin-film photovoltaics

    Get PDF
    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemente

    Infrared laser-based monitoring of the silane dissociation during deposition of silicon thin films

    Get PDF
    The silane dissociation efficiency, or depletion fraction, is an important plasma parameter by means of which the film growth rate and the amorphous-to-microcrystalline silicon transition regime can be monitored in situ. In this letter we implement a homebuilt quantum cascade laser-based absorption spectrometer to measure the silane dissociation efficiency in an industrial plasma-enhanced chemical vapor deposition system. This infrared laser-based diagnostic technique is compact, sensitive, and nonintrusive. Its resolution is good enough to resolve Doppler-broadened rotovibrational absorption lines of silane. The latter feature various absorption strengths, thereby enabling depletion measurements over a wide range of process conditions

    Positive solutions to indefinite Neumann problems when the weight has positive average

    Full text link
    We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE u"+q(t)g(u)=0,t[0,T], u" + q(t)g(u) = 0, \quad t \in [0, T], where g:[0,+[Rg: [0, +\infty[\, \to \mathbb{R} is positive on ]0,+[\,]0, +\infty[\, and q(t)q(t) is an indefinite weight. Complementary to previous investigations in the case 0Tq(t)<0\int_0^T q(t) < 0, we provide existence results for a suitable class of weights having (small) positive mean, when g(x)<0g'(x) < 0 at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type x=y,y=h(x)y2+q(t), x' = y, \qquad y' = h(x)y^2 + q(t), with h(x)h(x) a continuous function defined on the whole real line.Comment: 17 pages, 3 figure

    High-rate deposition of microcrystalline silicon in a large-area PECVD reactor and integration in tandem solar cells

    Get PDF
    We study the high-rate deposition of microcrystalline silicon in a large-area plasma-enhanced chemical-vapor-deposition (PECVD) reactor operated at 40.68 MHz, in the little-explored process conditions of high-pressure and high-silane concentration and depletion. Due to the long gas residence time in this process, the silane gas is efficiently depleted using moderate feed-in power density, thus facilitating up-scaling of the process to large surfaces. As observed in more traditional deposition processes, the deposition rate and performance of device-quality material are limited by the inter-electrode gap of the reactor. We significantly increase the cell performances by reducing this gap. X-ray diffractometry (XRD) and secondary ion mass spectroscopy (SIMS) are used to characterize the microcrystalline material deposited in the modified reactor at a rate of 1 nm/s. Comparison with a microcrystalline process at a low deposition rate demonstrates that the crystallographic orientation of the absorbing layer of the cell and the concentrations of contaminants are strongly correlated and dependent on the process. We use microcrystalline cells with absorber layer grown at a rate of 1 nm/s integrated as bottom cells in amorphous-microcrystalline (micromorph) tandem solar cells using the superstrate configuration. We report an initial efficiency of 10.8% (9.6% stabilized) for a tandem cell with 1.2 cm2 surface. Copyright # 2010 John Wiley & Sons, Ltd

    Modeling enteric methane emission from beef cattle in Brazil: a proposed equation performed by principal component analysis and mixed modeling multiple regression.

    Get PDF
    Brazil has the largest commercial beef cattle herd in the world but does not have its own model to predict methane (CH4 ) emission. The aim of this study was to create the first empirical enteric CH4 emission equation from variables that describe the animal diet using a meta-analytical data from Brazilian scientific publications (n = 50, published from 2003 to 2012)

    Optical emission spectroscopy to diagnose powder formation in SiH4-H2 discharges

    Get PDF
    Silane and hydrogen discharges are widely used for the deposition of silicon thin film solar cells in large area plasmaenhanced chemical vapor deposition reactors. In the case of microcrystalline silicon thin film solar cells, it is of crucial importance to increase the deposition rate in order to reduce the manufacturing costs. This can be performed by using high silane concentration, and usually high RF power and high pressure, all favorable to powder formation in the discharge that generally reduces the deposition rate as well as the deposited material quality. This work presents a study of powder formation using time-resolved optical emission spectroscopy. It is shown that this technique is suitable to detect different regimes in powder formation ranging from powder free discharge to discharge producing large dust particles. Intermediate powder formation regimes include the formation of small silicon clusters at plasma ignition as well as cycle of powder growth and ejection out of the discharge, and both are observable by this low-cost and experimentally simple technique

    The effect of amoxicillin on dental enamel development in vivo

    Get PDF
    The exposure to amoxicillin has been associated with molar incisor hypomineralization. This study aimed to determine if amoxicillin disturbs the enamel mineralization in in vivo experiments. Fifteen pregnant rats were randomly assigned into three groups to received daily phosphatase-buffered saline or amoxicillin as either 100 or 500 mg/kg. Mice received treatment from day 13 of pregnancy to day 40 postnatal. After birth, the offsprings from each litter continued to receive the same treatment according to their respective group. Calcium (Ca) and phosphorus (P) content in the dental hard tissues were analyzed from 60 upper first molars and 60 upper incisors by the complexometric titration method and colorimetric analysis using a spectrophotometer at 680 nm, respectively. Lower incisors were analyzed by X-ray microtomography, it was measured the electron density of lingual and buccal enamel, and the enamel and dentin thickness. Differences in Ca and P content and electron density among the groups were analyzed by one-way ANOVA. There was no significant difference on enamel electron density and thickness among the groups (p > 0.05). However, in incisors, the higher dose of amoxicillin decreased markedly the electron density in some rats. There were no statistically significant differences in Ca (p = 0.180) or P content (p = 0.054), although the higher dose of amoxicillin could affect the enamel in some animals. The amoxicillin did not significantly alter the enamel mineralization and thickness in rats. © 2020Peer reviewe

    Influence of pressure and silane depletion on microcrystalline silicon material quality and solar cell performance

    Get PDF
    Hydrogenated microcrystalline silicon growth by very high frequency plasma-enhanced chemical vapor deposition is investigated in an industrial-type parallel plate R&D KAI (TM) reactor to study the influence of pressure and silane depletion on material quality. Single junction solar cells with intrinsic layers prepared at high pressures and in high silane depletion conditions exhibit remarkable improvements, reaching 8.2% efficiency. Further analyses show that better cell performances are linked to a significant reduction of the bulk defect density in intrinsic layers. These results can be partly attributed to lower ion bombardment energies due to higher pressures and silane depletion conditions, improving the microcrystalline material quality. Layer amorphization with increasing power density is observed at low pressure and in low silane depletion conditions. A simple model for the average ion energy shows that ion energy estimates are consistent with the amorphization process observed experimentally. Finally, the material quality of a novel regime for high rate deposition is reviewed on the basis of these finding
    corecore