34 research outputs found

    Tools for Nano-Enabled Agriculture: Fertilizers Based on Calcium Phosphate, Silicon, and Chitosan Nanostructures

    Get PDF
    The Green New Deal requires a profound transformation of the agricultural sector, which will have to become more sustainable and ensure universal access to healthy food. Thus, it will be essential to introduce radical technological innovations. Nanotechnologies have the potential to produce a significant boost to the improvement of the food system. Within this context, in the next years, a strong challenge will need to be faced regarding developing new and more efficient uses of nutrients in agriculture, being the nutrient use efficiency (NUE) paramount in sustaining high crop productivity without depleting biodiversity, and altering both the natural and agricultural systems. Nutrients leaching causes environmental pollution and water eutrophication, while nutrient excess favors pest and weed widespread. Therefore, it will be mandatory to improve plant nutrition efficiency without affecting agricultural productivity and economic sustainability. A promising alternative consists of the introduction of the so-called nanomaterial enhanced fertilizers and plant growth stimulators. Such innovation includes nanotechnological solutions that can improve nutrient delivery for a more finely tuned, accurate, and saving-resources distribution of nutrients. This review provides a critical view of the latest advances in nanofertilizer research, mainly referring to nano-hydroxyapatite, silica nanoparticles, and chitosan-derived nanostructures

    Influence of Cerium Oxide Nanoparticles on Two Terrestrial Wild Plant Species

    Get PDF
    Most current studies on the relationships between plans and engineered nanomaterials (ENMs) are focused on food crops, while the effects on spontaneous plants have been neglected so far. However, from an ecological perspective, the ENMs impacts on the wild plants could have dire consequences on food webs and ecosystem services. Therefore, they should not be considered less critical. A pot trial was carried out in greenhouse conditions to evaluate the growth of Holcus lanatus L. (monocot) and Diplotaxis tenuifolia L. DC. (dicot) exposed to cerium oxide nanoparticles (nCeO2). Plants were grown for their entire cycle in a substrate amended with 200 mg kg1 nCeO2 having the size of 25 nm and 50 nm, respectively. nCeO2 were taken up by plant roots and then translocated towards leaf tissues of both species. However, the mean size of nCeO2 found in the roots of the species was different. In D. tenuifolia, there was evidence of more significant particle aggregation compared to H. lanatus. Further, biomass variables (dry weight of plant fractions and leaf area) showed that plant species responded differently to the treatments. In the experimental conditions, there were recorded stimulating effects on plant growth. However, nutritional imbalances for macro and micronutrients were observed, as well

    Lignin-based nano-enabled agriculture: A mini-review

    Get PDF
    Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered

    Influence of Cerium Oxide Nanoparticles on Two Terrestrial Wild Plant Species

    Get PDF
    Most current studies on the relationships between plans and engineered nanomaterials (ENMs) are focused on food crops, while the effects on spontaneous plants have been neglected so far. However, from an ecological perspective, the ENMs impacts on the wild plants could have dire consequences on food webs and ecosystem services. Therefore, they should not be considered less critical. A pot trial was carried out in greenhouse conditions to evaluate the growth of Holcus lanatus L. (monocot) and Diplotaxis tenuifolia L. DC. (dicot) exposed to cerium oxide nanoparticles (nCeO2). Plants were grown for their entire cycle in a substrate amended with 200 mg kg1 nCeO2 having the size of 25 nm and 50 nm, respectively. nCeO2 were taken up by plant roots and then translocated towards leaf tissues of both species. However, the mean size of nCeO2 found in the roots of the species was different. In D. tenuifolia, there was evidence of more significant particle aggregation compared to H. lanatus. Further, biomass variables (dry weight of plant fractions and leaf area) showed that plant species responded differently to the treatments. In the experimental conditions, there were recorded stimulating effects on plant growth. However, nutritional imbalances for macro and micronutrients were observed, as well

    Changes in Physiological and Agronomical Parameters of Barley (Hordeum vulgare) Exposed to Cerium and Titanium Dioxide Nanoparticles

    Get PDF
    The aims of our experiment were to evaluate the uptake and translocation of cerium and titaniumoxide nanoparticles and to verify their effects on the growth cycle of barley (Hordeum vulgare L.). Barley plants were grown to physiological maturity in soil enriched with either 0, 500 or 1000 mg kg1 cerium oxide nanoparticles (nCeO2) or titanium oxide nanoparticles (nTiO2) and their combination. The growth cycle of nCeO2 and nTiO2 treated plants was about 10 days longer than the controls. In nCeO2 treated plants the number of tillers, leaf area and the number of spikes per plant were reduced respectively by 35.5%, 28.3% and 30% (p \ua4 0.05). nTiO2 stimulated plant growth and compensated for the adverse effects of nCeO2. Concentrations of Ce and Ti in aboveground plant fractions were minute. The fate of nanomaterials within the plant tissues was different. Crystalline nTiO2 aggregates were detected within the leaf tissues of barley, whereas nCeO2 was not present in the form of nanoclusters

    Linking phytotechnologies to bioeconomy; varietal screening of high biomass and energy crops for phytoremediation of Cr and Cu contaminated soils

    Get PDF
    Enerbiochem was a project devoted to study new strategies of industrial valorisation of high biomass crops grown on brownfields or contaminated soils not suitable for food production. Chromium and copper accumulation and toxicity were examined in different species of agronomic interest. Cultivars of Brassica carinata A. Braun (7), Brassica juncea (L.) Czern. (4), Brassica napus L. (4), Raphanus sativus L. (4), inbred lines of Helianthus annuus L. (6) and cultivars of Nicotiana tabacum L. (3) were screened for the best genetic materials to be used with the aims: i) to produce the highest biomass in contaminated soils; and ii) possibly to phytoremediate them. Cr and Cu accumulation in shoots were evaluated on 16 days old plants grown for additional 5 days in the presence of either Cr (60 μM) or Cu (2 μM) in hydroponic. They were characterised for Cr and Cu concentrations in roots and shoots, shoot biomass, and total chlorophyll as well. Shoot biomass was significantly lower in Brassica species than in R. sativus, H. annuus and N. tabacum under Cr treatments. On the contrary, under Cu treatments, N. tabacum produced the lowest biomass in respect to other species. Potentially toxic element concentrations varied among genetic material and some genetic material resulted less affected (higher chlorophyll content and shoot biomass) even under higher Cu or Cr concentrations in shoot. Potential candidates within each species, to be used for coupling phytoremediation and biomass production on slightly Cr-Cu potentially contaminated soils are listed

    Agronomy towards the Green Economy. Optimization of metal phytoextraction

    Get PDF
    Traditional techniques for remediation of polluted soils are based on a physical-chemical approach; such techniques are expensive, have adverse effects on soil quality and are often highly expensive. In the scenario of the <em>Green Economy</em>, low cost and impact technologies should be promoted. Phytotechnologies are remediation technologies that use plants for the containment, degradation or removal of contaminants from polluted matrices for the restoration of degraded ecosystems. The process of phytoextraction is substantially based on plant-soil interactions that involves the mass transfer of an inorganic pollutant from the bulk soil to the plant biomass. This implies that the management of the two elements of the system (plant and soil) should have effects on the efficiency of the process. As phytoremediation is essentially an agronomic approach, its success depends ultimately on standard agronomic practices. The present paper aims give an overview on the role of agronomy in the optimization of metal phytoextraction is focused

    Phytoremediation of soils polluted by heavy metals and metalloids using crops: (i) the state of the art

    No full text
    Phytoremediation has a strong potential as a natural, solar-energy driven remediation approach for the treatment of soils and sediments polluted. Research has focused several aspects of the process of uptake, translocation and storage of heavy metals in plants. However we can not predict when the technique could find practical application on large scale. Beyond the evaluation of the best suited species, little has been inquired on the multiple aspects of the agronomic management of phytoextraction. This review provides a synthesis of current knowledge on phytoextraction of metals from soils and their accumulation in plants
    corecore