3,290 research outputs found

    PSEUDOMONAS VACCINE AND HYPERIMMUNE PLASMA IN THE TREATMENT OF THE SEVERELY BURNED PATIENT (A PROGRESS REPORT)

    Full text link
    This progress report demonstrates a pseudomonas vaccine and hyperimmune plasma used in treating 61 patients with burns involving a minimum of 20 percent of the body with full-thickness (third degree) loss of 40 percent total injury (partial thickness and full-thickness). The incidence of septicemia had decreased and mortality due to pseudomonas septicemia, when it does occur, has been greatly reduced.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72122/1/j.1749-6632.1968.tb14752.x.pd

    Diffusion and utilization of scientific and technological knowledge within state and local governments: Executive summary

    Get PDF
    The requirements for technology transfer among the state and local governments are analyzed. Topics discussed include: information systems, federal funding, delivery channels, state executive programs, and state legislature requirements for scientific information

    Chaotic itinerancy and power-law residence time distribution in stochastic dynamical system

    Full text link
    To study a chaotic itinerant motion among varieties of ordered states, we propose a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line, and a Markov chain with a transition probability matrix. To investigate the stability of attractor ruins in the model, we analyze the residence time distribution of orbits at attractor ruins. We show that the residence time distribution averaged by all attractor ruins is given by the superposition of (truncated) power-law distributions, if a basin of attraction for each attractor ruin has zero measure. To make sure of this result, we carry out a computer simulation for models showing chaotic itinerancy. We also discuss the fact that chaotic itinerancy does not occur in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.Comment: 6 pages, 10 figure

    Random matrices, non-backtracking walks, and orthogonal polynomials

    Full text link
    Several well-known results from the random matrix theory, such as Wigner's law and the Marchenko--Pastur law, can be interpreted (and proved) in terms of non-backtracking walks on a certain graph. Orthogonal polynomials with respect to the limiting spectral measure play a role in this approach.Comment: (more) minor change

    Uniqueness of embeddings of the affine line into algebraic groups

    No full text
    Let YY be the underlying variety of a connected affine algebraic group. We prove that two embeddings of the affine line C\mathbb{C} into YY are the same up to an automorphism of YY provided that YY is not isomorphic to a product of a torus (C∗)k(\mathbb{C}^\ast)^k and one of the three varieties C3\mathbb{C}^3, SL⁡2\operatorname{SL}_2, and PSL⁡2\operatorname{PSL}_2

    Critical percolation of free product of groups

    Full text link
    In this article we study percolation on the Cayley graph of a free product of groups. The critical probability pcp_c of a free product G1∗G2∗...∗GnG_1*G_2*...*G_n of groups is found as a solution of an equation involving only the expected subcritical cluster size of factor groups G1,G2,...,GnG_1,G_2,...,G_n. For finite groups these equations are polynomial and can be explicitly written down. The expected subcritical cluster size of the free product is also found in terms of the subcritical cluster sizes of the factors. In particular, we prove that pcp_c for the Cayley graph of the modular group PSL2(Z)\hbox{PSL}_2(\mathbb Z) (with the standard generators) is .5199....5199..., the unique root of the polynomial 2p5−6p4+2p3+4p2−12p^5-6p^4+2p^3+4p^2-1 in the interval (0,1)(0,1). In the case when groups GiG_i can be "well approximated" by a sequence of quotient groups, we show that the critical probabilities of the free product of these approximations converge to the critical probability of G1∗G2∗...∗GnG_1*G_2*...*G_n and the speed of convergence is exponential. Thus for residually finite groups, for example, one can restrict oneself to the case when each free factor is finite. We show that the critical point, introduced by Schonmann, pexpp_{\mathrm{exp}} of the free product is just the minimum of pexpp_{\mathrm{exp}} for the factors

    Small violations of full correlation Bell inequalities for multipartite pure random states

    Full text link
    We estimate the probability of random NN-qudit pure states violating full-correlation Bell inequalities with two dichotomic observables per site. These inequalities can show violations that grow exponentially with NN, but we prove this is not the typical case. For many-qubit states the probability to violate any of these inequalities by an amount that grows linearly with NN is vanishingly small. If each system's Hilbert space dimension is larger than two, on the other hand, the probability of seeing \emph{any} violation is already small. For the qubits case we discuss furthermore the consequences of this result for the probability of seeing arbitrary violations (\emph i.e., of any order of magnitude) when experimental imperfections are considered.Comment: 16 pages, one colum

    Dephasing by a nonstationary classical intermittent noise

    Get PDF
    We consider a new phenomenological model for a 1/fÎŒ1/f^{\mu} classical intermittent noise and study its effects on the dephasing of a two-level system. Within this model, the evolution of the relative phase between the ∣±>|\pm> states is described as a continuous time random walk (CTRW). Using renewal theory, we find exact expressions for the dephasing factor and identify the physically relevant various regimes in terms of the coupling to the noise. In particular, we point out the consequences of the non-stationarity and pronounced non-Gaussian features of this noise, including some new anomalous and aging dephasing scenarii.Comment: Submitted to Phys. Rev.

    The fractional Schr\"{o}dinger operator and Toeplitz matrices

    Full text link
    Confining a quantum particle in a compact subinterval of the real line with Dirichlet boundary conditions, we identify the connection of the one-dimensional fractional Schr\"odinger operator with the truncated Toeplitz matrices. We determine the asymptotic behaviour of the product of eigenvalues for the α\alpha-stable symmetric laws by employing the Szeg\"o's strong limit theorem. The results of the present work can be applied to a recently proposed model for a particle hopping on a bounded interval in one dimension whose hopping probability is given a discrete representation of the fractional Laplacian.Comment: 10 pages, 2 figure

    Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution

    Full text link
    We show that the spectrum of an ensemble of two-level systems can be broadened through `resetting' discrete fluctuations, in contrast to the well-known motional-narrowing effect. We establish that the condition for the onset of motional broadening is that the ensemble frequency distribution has heavy tails with a diverging first moment. We find that the asymptotic motional-broadened lineshape is a Lorentzian, and derive an expression for its width. We explain why motional broadening persists up to some fluctuation rate, even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure
    • 

    corecore