2,888 research outputs found

    Smart Local Energy Systems (SLES): A framework for exploring transition, context, and impacts

    Get PDF
    Energy systems globally are becoming increasingly decentralised; experiencing new types of loads; incorporating digital or “smart” technologies; and seeing the demand side engage in new ways. These changes impact on the management and regulation of future energy systems and question how they will support a socially equitable, acceptable, net-zero transition. This paper couples a meta-narrative literature review with expert interviews to explore how socio-technical regimes associated with centralised systems of provision (i.e. the prevailing paradigm in many countries around the world) differ to those of smart local energy systems (SLES). Findings show how SLES regimes incorporate niche technologies, business models and governance structures to enable new forms of localised operation and optimisation (e.g. automated network management), smarter decision making and planning, by new actors (e.g. local authorities, other local stakeholders), and engaging users in new ways. Through this they are expected to deliver on a wide range of outcomes, both within the SLES boundary and to the wider system. However, there may be trade-offs between outcomes due to pressures for change originating from competing actors (e.g. landscape vs. incumbents in the regime); understanding the mapping between different outcomes, SLES elements and their interconnections will be key to unlocking wider benefits

    Robustness and Enhancement of Neural Synchronization by Activity-Dependent Coupling

    Get PDF
    We study the synchronization of two model neurons coupled through a synapse having an activity-dependent strength. Our synapse follows the rules of Spike-Timing Dependent Plasticity (STDP). We show that this plasticity of the coupling between neurons produces enlarged frequency locking zones and results in synchronization that is more rapid and much more robust against noise than classical synchronization arising from connections with constant strength. We also present a simple discrete map model that demonstrates the generality of the phenomenon.Comment: 4 pages, accepted for publication in PR

    Fermion mixing in quasi-free states

    Get PDF
    Quantum field theoretic treatments of fermion oscillations are typically restricted to calculations in Fock space. In this letter we extend the oscillation formulae to include more general quasi-free states, and also consider the case when the mixing is not unitary.Comment: 10 pages, Plain Te

    General Framework for phase synchronization through localized sets

    Full text link
    We present an approach which enables to identify phase synchronization in coupled chaotic oscillators without having to explicitly measure the phase. We show that if one defines a typical event in one oscillator and then observes another one whenever this event occurs, these observations give rise to a localized set. Our result provides a general and easy way to identify PS, which can also be used to oscillators that possess multiple time scales. We illustrate our approach in networks of chemically coupled neurons. We show that clusters of phase synchronous neurons may emerge before the onset of phase synchronization in the whole network, producing a suitable environment for information exchanging. Furthermore, we show the relation between the localized sets and the amount of information that coupled chaotic oscillator can exchange

    Cosmological perturbations on local systems

    Get PDF
    We study the effect of cosmological expansion on orbits--galactic, planetary, or atomic--subject to an inverse-square force law. We obtain the laws of motion for gravitational or electrical interactions from general relativity--in particular, we find the gravitational field of a mass distribution in an expanding universe by applying perturbation theory to the Robertson-Walker metric. Cosmological expansion induces an (a¨/a)r\ddot a/a) \vec r force where a(t)a(t) is the cosmological scale factor. In a locally Newtonian framework, we show that the (a¨/a)r(\ddot a/a) \vec r term represents the effect of a continuous distribution of cosmological material in Hubble flow, and that the total force on an object, due to the cosmological material plus the matter perturbation, can be represented as the negative gradient of a gravitational potential whose source is the material actually present. We also consider the effect on local dynamics of the cosmological constant. We calculate the perihelion precession of elliptical orbits due to the cosmological constant induced force, and work out a generalized virial relation applicable to gravitationally bound clusters.Comment: 10 page

    On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres

    Full text link
    This paper focuses on the modeling of musical melodies as networks. Notes of a melody can be treated as nodes of a network. Connections are created whenever notes are played in sequence. We analyze some main tracks coming from different music genres, with melodies played using different musical instruments. We find out that the considered networks are, in general, scale free networks and exhibit the small world property. We measure the main metrics and assess whether these networks can be considered as formed by sub-communities. Outcomes confirm that peculiar features of the tracks can be extracted from this analysis methodology. This approach can have an impact in several multimedia applications such as music didactics, multimedia entertainment, and digital music generation.Comment: accepted to Multimedia Tools and Applications, Springe

    Presumed Pyogenic Granuloma Associated with Intravitreal Anti-Vascular Endothelial Growth Factor Therapy

    Get PDF
    To report a case of a presumed pyogenic granuloma at the site of multiple intravitreal anti-Vascular Endothelial Growth Factor (VEGF) injections. Intravitreal anti-VEGF injections can be complicated by a localized reaction of the conjunctiva

    A Diel Flux Balance Model Captures Interactions between Light and Dark Metabolism during Day-Night Cycles in C3 and Crassulacean Acid Metabolism Leaves

    Get PDF
    Although leaves have to accommodate markedly different metabolic flux patterns in the light and the dark, models of leaf metabolism based on flux-balance analysis (FBA) have so far been confined to consideration of the network under continuous light. An FBA framework is presented that solves the two phases of the diel cycle as a single optimization problem and, thus, provides a more representative model of leaf metabolism. The requirement to support continued export of sugar and amino acids from the leaf during the night and to meet overnight cellular maintenance costs forces the model to set aside stores of both carbon and nitrogen during the day. With only minimal constraints, the model successfully captures many of the known features of C3 leaf metabolism, including the recently discovered role of citrate synthesis and accumulation in the night as a precursor for the provision of carbon skeletons for amino acid synthesis during the day. The diel FBA model can be applied to other temporal separations, such as that which occurs in Crassulacean acid metabolism (CAM) photosynthesis, allowing a system-level analysis of the energetics of CAM. The diel model predicts that there is no overall energetic advantage to CAM, despite the potential for suppression of photorespiration through CO2 concentration. Moreover, any savings in enzyme machinery costs through suppression of photorespiration are likely to be offset by the higher flux demand of the CAM cycle. It is concluded that energetic or nitrogen use considerations are unlikely to be evolutionary drivers for CAM photosynthesis
    corecore