225 research outputs found

    Simultaneous mapping of temporally-resolved blood flow velocity and oxygenation in femoral artery and vein during reactive hyperemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Post-occlusive hyperemia is often used as a paradigm to evaluate vascular reactivity, for example by measuring post-ischemic flow-mediated dilation, arterial blood flow or temporally resolved venous blood oxygenation (HbO<sub>2</sub>). Here we demonstrate the feasibility of a simultaneous measurement of blood flow and HbO<sub>2 </sub>in the femoral circulation as part of a single procedure.</p> <p>Methods</p> <p>A multi-echo GRE pulse sequence was designed and implemented to collect velocity-encoded projections in addition to full-image echoes for field mapping as a means to quantify intravascular magnetic susceptibility. The method's feasibility was evaluated at 3T in a small pilot study involving two groups of healthy subjects (mean ages 26 ± 1.6 and 59 ± 7.3 years, N = 7 and 5, respectively) in terms of six parameters characterizing the time-course of reactive hyperemia and their sensitivity to differentiate age effects. The reproducibility was assessed on two of the seven young healthy subjects with three repeated measurements.</p> <p>Results</p> <p>The physiological parameters agree with those obtained with current methods that quantify either velocity or HbO<sub>2 </sub>alone. Of the six measures of vascular reactivity, one from each group was significantly different in the two subject groups (p < 0.05) even though the study was not powered to detect differences. The mean coefficient of variation (CV) from two subjects undergoing repeat scans were approximately 8% for the oximetric and the arterial velocimetric parameters in the femoral vein and artery, respectively, considerably below intersubject CVs (20 and 35%, for the young and older subject groups, respectively).</p> <p>Conclusion</p> <p>The proposed method is able quantify multiple parameters that may lead to more detailed assessment of peripheral vascular reactivity in a single cuff paradigm rather than in separate procedures as required previously, thereby improving measurement efficiency and patient comfort.</p

    Non-triggered quantification of central and peripheral pulse-wave velocity

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>Stiffening of the arteries results in increased pulse-wave velocity (PWV), the propagation velocity of the blood. Elevated aortic PWV has been shown to correlate with aging and atherosclerotic alterations. We extended a previous non-triggered projection-based cardiovascular MR method and demonstrate its feasibility by mapping the PWV of the aortic arch, thoraco-abdominal aorta and iliofemoral arteries in a cohort of healthy adults.</p> <p>Materials and Methods</p> <p>The proposed method "simultaneously" excites and collects a series of velocity-encoded projections at two arterial segments to estimate the wave-front velocity, which inherently probes the high-frequency component of the dynamic vessel wall modulus in response to oscillatory pressure waves. The regional PWVs were quantified in a small pilot study in healthy subjects (N = 10, age range 23 to 68 yrs) at 3T.</p> <p>Results</p> <p>The projection-based method successfully time-resolved regional PWVs for 8-10 cardiac cycles without gating and demonstrated the feasibility of monitoring beat-to-beat changes in PWV resulting from heart rate irregularities. For dul-slice excitation the aliasing was negligible and did not interfere with PWV quantification. The aortic arch and thoracoabdominal aorta PWV were positively correlated with age (p < 0.05), consistent with previous reports. On the other hand, the PWV of the iliofemoral arteries showed decreasing trend with age, which has been associated with the weakening of muscular arteries, a natural aging process.</p> <p>Conclusion</p> <p>The PWV map of the arterial tree from ascending aorta to femoral arteries may provide additional insight into pathophysiology of vascular aging and atherosclerosis.</p

    A Noninvasive Method for Quantifying Cerebral Metabolic Rate of Oxygen by Hybrid PET/MRI: Validation in a Porcine Model

    Get PDF
    The gold standard for imaging the cerebral metabolic rate of oxygen (CMRO2) is positron emission tomography (PET); however, it is an invasive and complex procedure that also requires correction for recirculating 15O-H2O and the blood-borne activity. We propose a noninvasive reference-based hybrid PET/magnetic resonance imaging (MRI) method that uses functional MRI techniques to calibrate 15O-O2-PET data. Here, PET/MR imaging of oxidative metabolism (PMROx) was validated in an animal model by comparison to PET-alone measurements. Additionally, we investigated if the MRI-perfusion technique arterial spin labelling (ASL) could be used to further simplify PMROx by replacing 15O-H2O-PET, and if the PMROx was sensitive to anesthetics-induced changes in metabolism. Methods: 15O-H2O and 15O-O2 PET data were acquired in a hybrid PET/MR scanner (3 T Siemens Biograph mMR), together with simultaneous functional MRI (OxFlow and ASL), from juvenile pigs (n = 9). Animals were anesthetized with 3% isoflurane and 6 mL/kg/h propofol for the validation experiments and arterial sampling was performed for PET-alone measurements. PMROx estimates were obtained using whole-brain (WB) CMRO2 from OxFlow and local cerebral blood flow (CBF) from either noninvasive 15O-H2O-PET or ASL (PMROxASL). Changes in metabolism were investigated by increasing the propofol infusion to 20 mL/kg/h. Results: Good agreement and correlation were observed between regional CMRO2 measurements from PMROx and PET-alone. No significant differences were found between OxFlow and PET-only measurements of WB oxygen extraction fraction (0.30 ± 0.09 and 0.31 ± 0.09) and CBF (54.1 ± 16.7 and 56.6 ± 21.0 mL/100 g/min), or between PMROx and PET-only CMRO2 estimates (1.89 ± 0.16 and 1.81 ± 0.10 mLO2/100 g/min). Moreover, PMROx and PMROxASL were sensitive to propofol-induced reduction in CMRO2 Conclusion: This study provides initial validation of a noninvasive PET/MRI technique that circumvents many of the complexities of PET CMRO2 imaging. PMROx does not require arterial sampling and has the potential to reduce PET imaging to 15O-O2 only; however, future validation involving human participants are required

    Computationally-Optimized Bone Mechanical Modeling from High-Resolution Structural Images

    Get PDF
    Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE) simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time), which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM). To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging

    stairs and fire

    Get PDF

    Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance.

    Get PDF
    The rate-limiting step in the delivery of nutrients to osteocytes and the removal of cellular waste products is likely diffusion. The transport of osteoid water across the mineralized matrix of bone was studied by proton nuclear magnetic resonance spectroscopy and imaging by measuring the diffusion fluxes of tissue water in cortical bone specimens from the midshaft of rabbit tibiae immersed in deuterium oxide. From the diffusion coefficient (D(a) = (7.8 +/- 1.5) x 10(-7) cm(2)/s) measured at 40 degrees C (close to physiological temperature), it can be inferred that diffusive transport of small molecules from the bone vascular system to the osteocytes occurs within minutes. The activation energy for water diffusion, calculated from D(a) measured at four different temperatures, suggests that the interactions between water molecules and matrix pores present significant energy barriers to diffusion. The spatially resolved profile of D(a) perpendicular to the cortical surface of the tibia, obtained using a finite difference model, indicates that diffusion rates are higher close to the endosteal and periosteal surfaces, decreasing toward the center of the cortex. Finally, the data reveal a water component (approximately 30%) diffusing four orders of magnitude more slowly, which is ascribed to water tightly bound to the organic matrix and mineral phase

    Three‐dimensional nuclear magnetic resonance microimaging of trabecular bone

    No full text
    The conventional approach to measuring structural parameters in trabecular bone rests on stereology from optical images, derived from sections of embedded bone. In order to provide data that are statistically representative of a sufficiently large volume, multiple sections need to be analyzed in each of the three orthogonal planes. In this work, an alternative technique is presented which is based on three‐dimensional (3D) volumetric proton nuclear magnetic resonance (NMR) microimaging. The method presented provides images from 9 × 9 × 4 mm3 volumes of defatted bone specimens in 15–20 minutes scan time at isotropic resolution corresponding to (78 μm)3 voxel size. Surface‐rendered images of bovine and human trabecular bone are shown and an algorithm was developed and implemented for determining the orientation and magnitude of the principal axes of the mean intercept length tensor. Copyright © 1995 ASBM
    corecore