5 research outputs found

    Cucumeropsis mannii seed oil ameliorates Bisphenol‐A‐induced adipokines dysfunctions and dyslipidemia

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2022-12-25, rev-recd 2023-01-07, accepted 2023-02-06, pub-electronic 2023-02-18Article version: VoRPublication status: PublishedThis study demonstrated the therapeutic potentials of Cucumeropsis mannii seed oil (CMSO) capable of alleviating BPA‐induced dyslipidemia and adipokine dysfunction. In this study, we evaluated the effects of CMSO on adipokine dysfunctions and dyslipidemia in bisphenol‐A (BPA)‐induced male Wistar rats. Six‐week‐old 36 albino rats of 100–200 g weight were assigned randomly to six groups, which received varied doses of BPA and/or CMSO. The administration of BPA and CMSO was done at the same time for 42 days by oral intubation. The adipokine levels and lipid profile were measured in adipose tissue and plasma using standard methods. BPA induced significant (p < .05) increases in triglycerides, cholesterol, leptin, LDL‐C, and atherogenic and coronary risk indices in adipose tissue and plasma, as well as a decrease in adiponectin and HDL‐C levels in Group II animals. BPA administration significantly (p < .05) elevated Leptin levels and reduced adiponectin levels. BPA plus CMSO reduced triglycerides, cholesterol, leptin, LDL‐C, and atherogenic and coronary risk indices while increasing adiponectin levels and HDL‐C in adipose tissue and plasma (p < .05). The results showed that BPA exposure increased adipose tissue as well as serum levels of the atherogenic index, triglycerides, cholesterol, coronary risk index, LDL‐C, leptin, and body weight with decreased adiponectin levels and HDL‐C. Treatment with CMSO reduced the toxicities caused by BPA in rats by modulating the body weight, adiponectin/leptin levels, and lipid profiles in serum and adipose tissue. This study has shown that CMSO ameliorates BPA‐induced dyslipidemia and adipokine dysfunctions. We suggest for further clinical trial to establish the clinical applications

    Renoprotective effects of Cucumeropsis mannii seed oil on cisplatin-induced nephrotoxicity in Wistar rats

    No full text
    Background: The growing prevalence of cancer and the concomitant rise in chemotherapy use have led to an increased incidence of kidney-related diseases, including nephrotoxicity. Cisplatin (CP) is a widely used and potent anticancer drug, but nephrotoxicity limits its clinical application. Purpose: Our study aimed to determine the phytochemicals and median lethal dose of Cucumeropsis mannii seed oil (CMSO) using standard methods and to further investigate the effects of CMSO on CP-induced nephrotoxicity in male Wistar rats. Methods: Twenty-one rats (100 to 150 g) were randomly divided into seven groups (n = 3) and treated with CMSO or normal saline for ten days. Group A received 1.0 mL of normal saline, irrespective of the body weight (b.w.). Groups B-D received 2500, 5000, and 7500 mg/kg b.w., respectively, of the CMSO and a single intraperitoneal dose of CP (8 mg/kg) on the seventh day. Groups E and F were administered 2500 mg/kg and 7500 mg/kg b.w., respectively, of the CMSO without CP administration. Group G received a single intraperitoneal dose (8 mg/kg b.w.) of CP on the seventh day without CMSO treatment. Results: The analysis of CMSO revealed the presence of various phytochemicals such as hydrogen cyanide, glycosides, saponins, steroids, tannins, alkaloids, terpenoids, phenols, and flavonoids. Acute toxicity testing demonstrated the safety of CMSO up to 5000 mg/kg b.w. We discovered that the CP administration increased serum creatinine (sCr), urea, blood urea nitrogen (BUN), and malondialdehyde (MDA) levels in rats and markedly decreased renal superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and glutathione (GSH) levels. CMSO attenuated kidney dysfunction, oxidative stress, and lipid peroxidation. Interestingly, CMSO prominently decreased sCr, urea, and BUN levels, boosted the activity of SOD, CAT, and GPx, increased GSH levels, and significantly (p < 0.05) decreased MDA levels. Histological assessment corroborated these biochemical findings. Conclusion: Our findings highlight the potential of CMSO as a protective agent against CP-induced nephrotoxicity. The observed effects are attributable to the rich phenolic and flavonoid content of CMSO. These findings have significant implications for developing complementary therapies to mitigate chemotherapy-associated kidney damage, potentially enhancing the safety and efficacy of cisplatin-based cancer treatments. Further investigation is needed to explore the clinical applications of CMSO for cancer patients

    Assessment of the Antimalarial Treatment Failure in Ebonyi State, Southeast Nigeria

    No full text
    The fight against malaria is a continuum as the epidemic is not abating. For proper deployment of tools in the fight against malaria, an assessment of the situation is necessary. This work assessed the level of antimalarial drug treatment failure in Ebonyi State, Nigeria. Both survey and in vitro analyses were adopted. The survey was used to obtain qualitative information from both the malaria subjects and the pharmacies where antimalarial drugs are sourced. The results from the survey were complemented by an in vitro assay of the level of active pharmaceutical ingredients (APIs) in the commonly used artemisinin combination in Nigeria; artemether/lumefantrine. Results from the survey revealed that artemisinin combination therapies (ACTs) remain the mainstay in the treatment of malaria, even though other non-artemisinin drugs are still used. It also revealed that many patients still self-medicate, although, this may not be connected to the treatment failure seen among some malaria subjects. The in vitro assay showed that ACT contains the right quantity of APIs. Further surveillance is, therefore, necessary to understand the real cause of treatment failure among malaria subjects in Nigeria
    corecore