3 research outputs found

    Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions

    No full text
    Nanoparticles can self-organize into “supercrystals” with many potential applications. Different paths can lead to nanoparticle self-organization into such periodic arrangements. An essential step is the transition from an amorphous state to the crystalline one. We investigate how pressure can induce a phase transition of a nanoparticle model system in water from the disordered liquid state to highly ordered supercrystals. We observe reversible pressure-induced supercrystal formation in concentrated solutions of gold nanoparticles by means of small-angle X-ray scattering. The supercrystal formation occurs only at high salt concentrations in the aqueous solution. The pressure dependence of the structural parameters of the resulting crystal lattices is determined. The observed transition can be reasoned with the combined effect of salt and pressure on the solubility of the organic PEG shell that passivates the nanoparticles

    Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles

    No full text
    The use of mixed ligand layers including poly­(ethylene glycol)-based ligands for the functionalization of nanoparticles is a very popular strategy in the context of nanomedicine. However, it is challenging to control the composition of the ligand layer and maintain high colloidal and chemical stability of the conjugates. A high level of control and stability are crucial for reproducibility, upscaling, and safe application. In this study, gold nanoparticles with well-defined mixed ligand layers of α-methoxy­poly­(ethylene glycol)-ω-(11-mercapto­undecanoate) (PEGMUA) and 11-mercapto­undecanoic acid (MUA) were synthesized and characterized by ATR-FTIR spectroscopy and gel electrophoresis. The colloidal and chemical stability of the conjugates was tested by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and UV/vis spectroscopy based experiments, and their interactions with cells were analyzed by elemental analysis. We demonstrate that the alkylene spacer in PEGMUA is the key feature for the controlled synthesis of mixed layer conjugates with very high colloidal and chemical stability and that a controlled synthesis is not possible using regular PEG ligands without the alkylene spacer. With the results of our stability tests, the molecular structure of the ligands can be clearly linked to the colloidal and chemical stabilization. We expect that the underlying design principle can be generalized to improve the level of control in nanoparticle surface chemistry

    On the Spontaneous Formation of Clathrate Hydrates at Water–Guest Interfaces

    No full text
    The formation of hydrates, cage-like water-gas structures, is of tremendous importance both in industries and research. Although of major significance, the formation process is not completely understood so far. We present a comprehensive study of hydrate formation at liquid–liquid interfaces between water and isobutane, propane, carbon dioxide, and at the liquid–gas interface between water and xenon. We investigated the structure of these interfaces under quiescent conditions in situ by means of X-ray reflectivity measurements both inside and outside the zone of hydrate stability. At the interfaces between water and liquid alkanes, no evidence for a structural change was found. In contrast, the accumulation of guest molecules inside nanothick interfacial layers was observed at the water–xenon and liquid–liquid water–CO<sub>2</sub> interfaces. We show that only those systems initially exhibiting such guest-enriched interfacial layers developed into macroscopic gas hydrates within our observation times (∼12 h). Therefore, these layers act as triggers for the spontaneous formation of macroscopic hydrates
    corecore