34 research outputs found

    The status of the energy calibration, polarization and monochromatization of the FCC-ee

    Get PDF
    The Future Circular electron-positron Collider, FCC- ee, is designed for unprecedented precision for particle physics experiments from the Z-pole up to above the top-pair-threshold, corresponding to a beam energy range from 45.6 to 182.5 GeV. Performing collisions at various particle-physics resonances requires precise knowledge of the centre-of-mass energy (ECM) and collision boosts at all four interaction points. Measurement of the ECM by resonant depolarization of transversely polarized pilot bunches in combination with a 3D polarimeter, aims to achieve a systematic uncertainty of 4 and 100 keV for the Z-pole and W-pair-threshold energies respectively. The ECM itself depends on the RF-cavity locations, beamstrahlung, longitudinal impedance, the Earth’s tides, opposite sign dispersion and possible collision offsets. Application of monochromatization schemes are envisaged at certain beam energies to reduce the energy spread. The latest results of studies of the energy calibration, polarization and monochromatization are reported here

    Automated Image Analysis for Retention Determination in Centrifugal Partition Chromatography

    No full text
    In Centrifugal Partition Chromatography, two immiscible liquids are used as mobile and stationary phases. During operation, bleeding of the stationary phase cannot be eliminated completely. For optimal separation performance, however, it is crucial to maintain sufficient amounts of stationary phase in the system, which is quantitatively measured by the retention value. With an online measurement of that retention value, it is possible to make predictions about the separation performance of the system. Therefore, an image processing algorithm was developed in this study, allowing quick and effortless online evaluation of retention by image analysis. Finally, the results were compared with proven analysis methods to evaluate the measurements’ validity. With the help of the new algorithm, it was possible to improve the number of pictures analyzed per time and the precision compared to the previously used technique

    Automated Image Analysis for Retention Determination in Centrifugal Partition Chromatography

    No full text
    In Centrifugal Partition Chromatography, two immiscible liquids are used as mobile and stationary phases. During operation, bleeding of the stationary phase cannot be eliminated completely. For optimal separation performance, however, it is crucial to maintain sufficient amounts of stationary phase in the system, which is quantitatively measured by the retention value. With an online measurement of that retention value, it is possible to make predictions about the separation performance of the system. Therefore, an image processing algorithm was developed in this study, allowing quick and effortless online evaluation of retention by image analysis. Finally, the results were compared with proven analysis methods to evaluate the measurements’ validity. With the help of the new algorithm, it was possible to improve the number of pictures analyzed per time and the precision compared to the previously used technique

    Spatially and Temporally Resolved Analysis of Bleeding in a Centrifugal Partition Chromatography Rotor

    No full text
    Centrifugal Partition Chromatography (CPC) is a separation technique that utilizes immiscible liquid phases to purify compounds. The selection of solvents in Liquid–Liquid Chromatography offers flexibility and optimization possibilities for specific separation tasks. Understanding the hydrodynamics inside the apparatus is crucial for optimizing a CPC process. The phase retention ratio (Sf) determines the apparatus’s operating point and separation efficiency. However, stationary phase leakage, known as bleeding, complicates the immobilization of this phase. We used a partly transparent single-disc rotor to investigate the time and space dependency of bleeding inside a CPC apparatus, enabling real-time and localized determination of the phase retention ratio. By tracking the retention values over time, we observed the bleeding phenomenon and its progression from the inlet to the rotor outlet. Depending on the phase system used, the CPC was utilizable for a separation task for only 173–500 dimensionless residence times. Systems with a higher stability parameter (as described in the literature) showed a lower bleeding rate and increased stability over time. Accordingly, our results demonstrate the importance of maintaining an optimal ratio of mobile to stationary phase for efficient separation

    Influence of Tamoxifen on Different Biological Pathways in Tumorigenesis and Transformation in Adipose-Derived Stem Cells, Mammary Cells and Mammary Carcinoma Cell Lines—An In Vitro Study

    No full text
    Breast carcinoma is one of the most common malignant tumors in women. In cases of hormone-sensitive cells, tamoxifen as an anti-estrogenic substance is a first line medication in the adjuvant setting. The spectrum of autologous breast reconstructions ranges from fat infiltrations to complex microsurgical procedures. The influence of adipose-derived stem cells (ASC) on the tumor bed and a possibly increased recurrence rate as a result are critically discussed. In addition, there is currently no conclusive recommendation regarding tamoxifen-treated patients and autologous fat infiltrations. The aim of the present study was to investigate the effect of tamoxifen on the gene expression of a variety of genes involved in tumorigenesis, cell growth and transformation. Mammary epithelial cell line and mammary carcinoma cell lines were treated with tamoxifen in vitro as well as co-cultured with ASC. Gene expression was quantified by PCR arrays and showed increased expression in the mammary carcinoma cell lines with increasing time of treatment and concentration of tamoxifen. The data presented can be considered as an addition to the controversial discussion on the relationship between ASC and breast carcinoma cells. Further studies are needed to quantify the in vivo interaction of ASC and mammary carcinoma cells and to conclusively assess the impact of tamoxifen in reconstructive cases with fat grafting

    Drug safety in older patients with alcohol use disorder: a retrospective cohort study

    No full text
    Background: Older patients with alcohol use disorder are at particular risk of developing adverse drug reactions due to multimorbidity, polypharmacy, and altered organ function. Objectives: In this study, we investigated the frequency and characteristics of potentially serious alcohol–medication interactions, potentially inappropriate medications (PIMs) for older adults, and potential drug–drug interactions (pDDIs) in a population of older patients with alcohol use disorder over a 10-year period. Design: Retrospective monocentric cohort study. Methods: Prescribed medications were screened for potentially serious alcohol–medication interactions, PIMs, and pDDIs using the POSAMINO (POtentially Serious Alcohol–Medication INteractions in Older adults) criteria, the PRISCUS 2.0 list, the FORTA (Fit fOR The Aged) classification, and the drug interaction program AiD Klinik ® . Results: We enrolled 114 patients aged ⩾65 years with alcohol use disorder, who were treated in an addiction unit of a university hospital in Germany. About 80.7% of the study population had at least one potentially serious alcohol–medication interaction. Potentially serious alcohol–medication interactions most commonly affected the cardiovascular (57.7%) and the central nervous system (32.3%). A total of 71.1% of the study population received at least one prescription of a FORTA C or D drug, compared with 42.1% who received at least one PIM prescription according to the PRISCUS 2.0 list. A total of 113 moderate and 72 severe pDDIs were identified in the study population. Conclusion: Older patients with alcohol use disorders are frequently exposed to potentially serious alcohol–medication interactions, PIMs, and pDDIs. Improvements in the quality of prescribing should primarily target the use of cardiovascular and psychotropic drugs

    Molecular and morphological findings in a sample of oral surgery patients: What can we learn for multivariate concepts for age estimation?

    No full text
    It has already been proposed that a combined use of different molecular and morphological markers of aging in multivariate models may result in a greater accuracy of age estimation. However, such an approach can be complex and expensive, and not every combination may be useful. The significance and usefulness of combined analyses of D-aspartic acid in dentine, pentosidine in dentine, DNA methylation in buccal swabs at five genomic regions (PDE4C, RPA2, ELOVL2, DDO, and EDARADD), and third molar mineralization were tested by investigating a sample of 90 oral surgery patients. Machine learning models for age estimation were trained and evaluated, and the contribution of each parameter to multivariate models was tested by assessment of the predictor importance. For models based on D-aspartic acid, pentosidine, and the combination of both, mean absolute errors (MAEs) of 2.93, 3.41, and 2.68 years were calculated, respectively. The additional inclusion of the five DNAm markers did not improve the results. The sole DNAm-based model revealed a MAE of 4.14 years. In individuals under 28 years of age, the combination of the DNAm markers with the third molar mineralization stages reduced the MAE from 3.85 to 2.81 years. Our findings confirm that the combination of parameters in multivariate models may be very useful for age estimation. However, the inclusion of many parameters does not necessarily lead to better results. It is a task for future research to identify the best selection of parameters for the different requirements in forensic practice
    corecore