7 research outputs found
Security for the Industrial IoT: The Case for Information-Centric Networking
Industrial production plants traditionally include sensors for monitoring or
documenting processes, and actuators for enabling corrective actions in cases
of misconfigurations, failures, or dangerous events. With the advent of the
IoT, embedded controllers link these `things' to local networks that often are
of low power wireless kind, and are interconnected via gateways to some cloud
from the global Internet. Inter-networked sensors and actuators in the
industrial IoT form a critical subsystem while frequently operating under harsh
conditions. It is currently under debate how to approach inter-networking of
critical industrial components in a safe and secure manner.
In this paper, we analyze the potentials of ICN for providing a secure and
robust networking solution for constrained controllers in industrial safety
systems. We showcase hazardous gas sensing in widespread industrial
environments, such as refineries, and compare with IP-based approaches such as
CoAP and MQTT. Our findings indicate that the content-centric security model,
as well as enhanced DoS resistance are important arguments for deploying
Information Centric Networking in a safety-critical industrial IoT. Evaluation
of the crypto efforts on the RIOT operating system for content security reveal
its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201
Recommended from our members
Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp
We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell
Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation
This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation
Proceedings of the 3rd MANIAC Challenge, Berlin, Germany, July 27 - 28, 2013
This is the Proceedings of the 3rd MANIAC Challenge, which was held in
Berlin, Germany, July 27 - 28, 2013
Recommended from our members
Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation
This study investigates the tribolayer properties at the interface of ceramic/metal (i.e., WC/W) sliding contacts using various experimental approaches and classical atomistic simulations. Experimentally, nanoindentation and micropillar compression tests, as well as adhesion mapping by means of atomic force microscopy, are used to evaluate the strength of tungsten?carbon tribolayers. To capture the influence of environmental conditions, a detailed chemical and structural analysis is performed on the worn surfaces by means of XPS mapping and depth profiling along with transmission electron microscopy of the debris particles. Experimentally, the results indicate a decrease in hardness and modulus of the worn surface compared to the unworn one. Atomistic simulations of nanoindentation on deformed and undeformed specimens are used to probe the strength of the WC tribolayer and despite the fact that the simulations do not include oxygen, the simulations correlate well with the experiments on deformed and undeformed surfaces, where the difference in behavior is attributed to the bonding and structural differences of amorphous and crystalline W-C. Adhesion mapping indicates a decrease in surface adhesion, which based on chemical analysis is attributed to surface passivation