370 research outputs found

    On the formation of TeV radiation in LS 5039

    Full text link
    The recent detections of TeV gamma-rays from compact binary systems show that relativistic outflows (jets or winds) are sites of effective acceleration of particles up to multi-TeV energies. In this paper, we discuss the conditions of acceleration and radiation of ultra-relativistic electrons in LS 5039, the gamma-ray emitting binary system for which the highest quality TeV data are available. Assuming that the gamma-ray emitter is a jet-like structure, we performed detailed numerical calculations of the energy spectrum and lightcurves accounting for the acceleration efficiency, the location of the accelerator, the speed of the emitting flow, the inclination angle of the system, as well as specific features related to anisotropic inverse Compton scattering and pair production. We conclude that the accelerator should not be deep inside the binary system unless we assume a very efficient acceleration rate. We show that within the IC scenario both the gamma-ray spectrum and flux are strongly orbital phase dependent. Formally, our model can reproduce, for specific sets of parameter values, the energy spectrum of gamma-rays reported by HESS for wide orbital phase intervals. However, the physical properties of the source can be constrained only by observations capable of providing detailed energy spectra for narrow orbital phase intervals (Δϕâ‰Ș0.1\Delta\phi\ll 0.1).Comment: 14 pages, 26 figures, accepted for publication in MNRAS, submitted on July 11, 200

    Unraveling the high-energy emission components of gamma-ray binaries

    Full text link
    The high and very-high energy spectrum of gamma-ray binaries has become a challenge for all theoretical explanations since the detection of powerful, persistent GeV emission from LS 5039 and LS I +61 303 by Fermi/LAT. The spectral cutoff at a few GeV indicates that the GeV component and the fainter, hard TeV emission above 100 GeV are not directly related. We explore the possible origins of these two emission components in the framework of a young, non-accreting pulsar orbiting the massive star, and initiating the non-thermal emission through the interaction of the stellar and pulsar winds. The pulsar/stellar wind interaction in a compact orbit binary gives rise to two potential locations for particle acceleration: the shocks at the head-on collision of the winds and the termination shock caused by Coriolis forces on scales larger than the binary separation. We explore the suitability of these two locations to host the GeV and TeV emitters, respectively, through the study of their non-thermal emission along the orbit. We focus on the application of this model to LS 5039 given its well determined stellar wind with respect to other gamma-ray binaries. The application of the proposed model to LS 5039 indicates that these two potential emitter locations provide the necessary conditions for reproduction of the two-component high-energy gamma-ray spectrum of LS 5039. In addition, the ambient postshock conditions required at each of the locations are consistent with recent hydrodynamical simulations. The scenario based on the interaction of the stellar and pulsar winds is compatible with the GeV and TeV emission observed from gamma-ray binaries with unknown compact objects, such as LS 5039 and LS I +61 303.Comment: Version as published in A&

    Gamma-ray flares from red giant/jet interactions in AGN

    Full text link
    Non-blazar AGN have been recently established as a class of gamma-ray sources. M87, a nearby representative of this class, show fast TeV variability on timescales of a few days. We suggest a scenario of flare gamma-ray emission in non-blazar AGN based on a red giant interacting with the jet at the base. We solve the hydrodynamical equations that describe the evolution of the envelope of a red giant blown by the impact of the jet. If the red giant is at least slightly tidally disrupted by the supermassive black hole, enough stellar material will be blown by the jet, expanding quickly until a significant part of the jet is shocked. This process can render suitable conditions for energy dissipation and proton acceleration, which could explain the detected day-scale TeV flares from M87 via proton-proton collisions. Since the produced radiation would be unbeamed, such an events should be mostly detected from non-blazar AGN. They may be frequent phenomena, detectable in the GeV-TeV range even up to distances of ∌1\sim 1 Gpc for the most powerful jets. The counterparts at lower energies are expected to be not too bright.} {M87, and nearby non-blazar AGN in general, can be fast variable sources of gamma-rays through red giant/jet interactions.Comment: 8 pages, 4 figure

    Clues to unveil the emitter in LS 5039: powerful jets vs colliding winds

    Full text link
    LS 5039 is among the most interesting VHE sources in the Galaxy. Two scenarios have been put forward to explain the observed TeV radiation: jets vs pulsar winds. The source has been detected during the superior conjunction of the compact object, when very large gamma-ray opacities are expected. In addition, electromagnetic cascades, which may make the system more transparent to gamma-rays, are hardly efficient for realistic magnetic fields in massive star surroundings. All this makes unlikely the standard pulsar scenario for LS 5039, in which the emitter is the region located between the star and the compact object, where the opacities are the largest. Otherwise, a jet-like flow can transport energy to regions where the photon-photon absorption is much lower and the TeV radiation is not so severely absorbed.Comment: 3 pages, 3 Figures, contribution to the "Fourth Heidelberg International Symposium on High-Energy Gamma-Ray Astronomy 2008

    Towards a Formalism-Based Toolkit for Automotive Applications

    Full text link
    The success of a number of projects has been shown to be significantly improved by the use of a formalism. However, there remains an open issue: to what extent can a development process based on a singular formal notation and method succeed. The majority of approaches demonstrate a low level of flexibility by attempting to use a single notation to express all of the different aspects encountered in software development. Often, these approaches leave a number of scalability issues open. We prefer a more eclectic approach. In our experience, the use of a formalism-based toolkit with adequate notations for each development phase is a viable solution. Following this principle, any specific notation is used only where and when it is really suitable and not necessarily over the entire software lifecycle. The approach explored in this article is perhaps slowly emerging in practice - we hope to accelerate its adoption. However, the major challenge is still finding the best way to instantiate it for each specific application scenario. In this work, we describe a development process and method for automotive applications which consists of five phases. The process recognizes the need for having adequate (and tailored) notations (Problem Frames, Requirements State Machine Language, and Event-B) for each development phase as well as direct traceability between the documents produced during each phase. This allows for a stepwise verification/validation of the system under development. The ideas for the formal development method have evolved over two significant case studies carried out in the DEPLOY project

    Detection of gamma rays of likely jet origin in Cygnus X-1

    Full text link
    Aims: Probe the high-energy (>>60 MeV) emission from the black hole X-ray binary system, Cygnus X-1, and investigate its origin. Methods: We analysed 7.5 yr of data by Fermi/LAT with the latest PASS8 software version. Results: We report the detection of a signal at ∌\sim8 σ\sigma statistical significance spatially coincident with Cygnus X-1 and a luminosity above 60 MeV of 5.5×\times1033^{33} erg s−1^{-1}. The signal is correlated with the hard X-ray flux: the source is observed at high energies only during the hard X-ray spectral state, when the source is known to display persistent, relativistic radio emitting jets. The energy spectrum, extending up to ∌\sim20 GeV without any sign of spectral break, is well fitted by a power-law function with a photon index of 2.3±\pm0.2. There is a hint of orbital flux variability, with high-energy emission mostly coming around the superior conjunction. Conclusions: We detected GeV emission from Cygnus X-1 and probed that the emission is most likely associated with the relativistic jets. The evidence of flux orbital variability points to the anisotropic inverse Compton on stellar photons as the mechanism at work, thus constraining the emission region to a distance 1011−101310^{11}-10^{13} cm from the black hole.Comment: accepted A\&A (9 pages and 7 figures

    Study of the Spectral and Temporal Characteristics of X-Ray Emission of the Gamma-Ray Binary LS 5039 with Suzaku

    Full text link
    We report on the results from Suzaku broadband X-ray observations of the galactic binary source LS5039. The Suzaku data, which have continuous coverage of more than one orbital period, show strong modulation of the X-ray emission at the orbital period of this TeV gamma-ray emitting system.The X-ray emission shows a minimum at orbital phase ~ 0.1, close to the so-called superior conjunction of the compact object, and a maximum at phase ~0.7, very close to the inferior conjunction of the compact object. The X-ray spectral data up to 70 keV are described by a hard power-law with a phase-dependent photon index which varies within Gamma ~1.45 - 1.61. The amplitude of the flux variation is a factor of 2.5, but is significantly less than that of the factor ~8 variation in the TeV flux. Otherwise the two light curves are similar, but not identical. Although periodic X-ray emission has been found from many galactic binary systems, the Suzaku result implies a phenomenon different from the "standard" origin of X-rays related to the emission of the hot accretion plasma formed around the compact companion object. The X-ray radiation of LS5039is likely to be linked to very-high-energy electrons which are also responsible for the TeV gamma-ray emission. While the gamma-rays are the result of inverse Compton scattering by electrons on optical stellar photons, X-rays are produced via synchrotron radiation. Yet, while the modulation of the TeV gamma-ray signal can be naturally explained by the photon-photon pair production and anisotropic inverse Compton scattering, the observed modulation of synchrotron X-rays requires an additional process, the most natural one being adiabatic expansion in the radiation production region.Comment: 9 pages, 7 figures, Accepted for publication in ApJ, references fixed, a few typos correcte

    Conflict of Interest in Science Communication: More than a Financial Issue Report from Esteve Foundation Discussion Group, April 2009

    Get PDF
    A systematic review and meta-analysis suggests that around 2% of scientists admit to have falsified research at least once (1). Up to 33% admit other questionable practices such as plagiarism, duplicate publication, undisclosed changes in pre-research protocols or dubious ethical behavior (1). There can be no doubt that discovered cases of research and publication misconduct represent a tip of an iceberg and many cases go unreported (2). Experienced biomedical journal editors are aware of a “rogues’ gallery” of major fraudsters, such as Schoen, Hwang, Sudbo, Poehlman, Singh, and Chandra (3-8). Much more common are the less dramatic, because more subtle but probably more dangerous, examples; these are more dangerous because they remain undiscovered so may feed into meta-analyses and guidelines. A seminar organized by the Esteve Foundation, held in Sitges in April 2009, concentrated on conflicts of interest (COI, sometimes also referred to as Competing Interests, CI), which underlie so much research and publication misconduct. All attendants of the meeting agreed that there were many sources of COI in the general process of scientific communication (Figure 1). The meeting was mainly focused on non-financial COI. Three introductory presentations highlighted some of the topics related to COI in the contemporary scientific publishing enterprise

    Interpretation of the flares of M87 at TeV energies in the cloud-jet interaction scenario

    Full text link
    Active galactic nuclei with misaligned jets have been recently established as a class of high-energy gamma-ray sources. M87, a nearby representative of this class, shows fast TeV variability on timescales less than one day. We present calculations performed in the framework of the scenario in which gamma-ray flares in non-blazar active galactic nuclei are produced by a red giant or a gas cloud interacting with the jet. We show that both the light curve and energy spectrum of the spectacular April 2010 flare can be reproduced by this model, assuming that a relatively massive cloud of approx 1.e29 g penetrates into the jet at few tens of Schwarzschild radii from the super-massive black hole.Comment: 8 pages, 8 figures, accepted by Ap
    • 

    corecore