22 research outputs found

    Riesz-projection-based methods for the numerical simulation of resonance phenomena in nanophotonics

    Get PDF
    Resonance effects are ubiquitous in physics and essential for understanding wave propagation and interference. In the field of nanophotonics, devices are often based on the strong confinement of light by resonances. The numerical simulation of resonances plays a crucial role for the design and optimization of the devices. The resonances are electromagnetic field solutions to the time-harmonic source-free Maxwell's equations with loss mechanisms. The corresponding eigenproblems are non-Hermitian due to the losses leading to complex-valued eigenvalues. The material dispersion, which is typically significant in nanophotonics, results in nonlinear eigenproblems. In this thesis, we develop an approach based on Riesz projections for the expansion of electromagnetic fields caused by light sources into resonances. The Riesz projection expansion is computed by contour integration in the complex frequency plane. The numerical realization essentially relies on solving Maxwell's equations with a source term, meaning solving linear systems of equations. For this, Maxwell's equations are directly evaluated at the given frequencies on the integration contours, which implies that linearization of the corresponding nonlinear eigenproblems is not required. This makes Riesz-projection-based approaches a natural choice for dealing with eigenproblems from the field of nanophotonics. We further extend the Riesz projection expansion approach to optical far-field quantities, which is not straightforward due to the spatial divergence of the resonances with increasing distance from the underlying resonators. Based on the ideas of the Riesz projection expansion, we introduce approaches for the calculation of physically relevant eigenvalues and for computing eigenvalue sensitivities. Physically relevant means that the eigenvalues are significant with respect to the resonance expansion of the physical observable of interest. By using physical solutions to Maxwell's equations for the contour integration, the developed numerical methods have a strong relation to physics. The methods can be applied to any material system and to any measurable physical quantity that can be derived from the electric field. We apply the numerical methods to several recent nanophotonic applications, for example, single-photon sources from the field of quantum technology, plasmonic nanostructures characterized by nonlocal material properties, and nanoantennas based on bound states in the continuum. The approaches introduced in this thesis are developed for nanophotonic systems, but can be applied to any resonance problem.Resonanzeffekte treten in allen physikalischen Systemen auf, die durch Wellen beschrieben werden, und sie sind fĂŒr die Beschreibung von Wellenausbreitung und Interferenz unerlĂ€sslich. Auf dem Gebiet der Nanophotonik basieren viele GerĂ€te auf den durch Lichtquellen angeregten Resonanzen mit ihren stark erhöhten elektromagnetischen Feldern. Die numerische Simulation von Resonanzen ist ein wichtiges Hilfsmittel fĂŒr die Entwicklung und Optimierung der GerĂ€te. Die Resonanzen sind die Lösungen der zeitharmonischen quellenfreien Maxwell-Gleichungen mit Verlustmechanismen. Die entsprechenden Eigenwertprobleme sind aufgrund der Verluste nicht-Hermitesch, was zu komplexwertigen Eigenwerten fĂŒhrt. Die Materialdispersion, die in der Nanophotonik typischerweise signifikant ist, fĂŒhrt zu nichtlinearen Eigenwertproblemen. In dieser Dissertation entwickeln wir einen auf der Riesz-Projektion basierenden Ansatz fĂŒr die Expansion von elektromagnetischen Feldern, die von Lichtquellen erzeugt werden, in Resonanzen. Wir berechnen die Riesz-Projektionen durch Konturintegration in der komplexen Frequenzebene. Die numerische Realisierung basiert im Wesentlichen auf der Lösung der Maxwell-Gleichungen mit einem Quellterm, das heißt der Lösung von linearen Gleichungssystemen. Dabei werden die Maxwell-Gleichungen direkt bei den gegebenen Frequenzen auf den Integrationskonturen ausgewertet, sodass eine Linearisierung der entsprechenden nichtlinearen Eigenwertprobleme nicht erforderlich ist. Das macht die auf der Riesz-Projektion basierenden Methoden zu einer natĂŒrlichen Wahl fĂŒr die Behandlung von Eigenwertproblemen aus dem Bereich der Nanophotonik. Wir erweitern den Ansatz der Riesz-Projektions-Expansion auf optische GrĂ¶ĂŸen im Fernfeld, was aufgrund der rĂ€umlichen Divergenz der Resonanzen mit zunehmender Entfernung von den zugrunde liegenden Resonatoren problematisch ist. Basierend auf den Ideen der Riesz-Projektions-Expansion entwickeln wir außerdem Methoden zur Berechnung physikalisch relevanter Eigenwerte und zur Berechnung von SensitivitĂ€ten von Eigenwerten. Physikalisch relevant bedeutet, dass die Eigenwerte in Bezug auf die Resonanzexpansion der interessierenden physikalischen GrĂ¶ĂŸe signifikant sind. Durch die Verwendung physikalischer Lösungen der Maxwell-Gleichungen fĂŒr die Konturintegration haben die entwickelten numerischen Methoden einen starken Bezug zur zugrunde liegenden Physik. Die Methoden können auf jedes Materialsystem und auf jede messbare physikalische GrĂ¶ĂŸe angewendet werden, die sich aus dem elektrischen Feld herleiten lĂ€sst. Wir wenden die numerischen Methoden auf mehrere aktuelle nanophotonische Strukturen an, wie zum Beispiel Einzelphotonenquellen aus dem Bereich der Quantentechnologie, plasmonische Nanostrukturen, die sich durch nichtlokale Materialeigenschaften auszeichnen, und Nanoantennen, die auf gebundenen ZustĂ€nden im Kontinuum basieren. Die in dieser Dissertation vorgestellten AnsĂ€tze werden fĂŒr nanophotonische Systeme entwickelt, lassen sich aber auf jedes Resonanzproblem anwenden

    Enhanced Purcell factor for nanoantennas supporting interfering resonances

    Full text link
    We study the effect of coupled resonances and quasi-bound states in the continuum (quasi-BICs) on the Purcell factor in dielectric resonant nanoantennas. We analyze numerically interfering resonances in a nanodisk with and without a substrate when the modes are coupled to an emitter localized inside the nanodisk, and we quantify the modal contributions to the Purcell factor also reconstructing the radiation patterns of the resonant system. It is revealed that the Purcell effect can be boosted substantially for a strong coupling of resonances in the quasi-BIC regime

    An auxiliary field approach for computing optical resonances in dispersive media

    No full text
    Abstract We report on an auxiliary field approach for solving nonlinear eigenvalue problems occurring in nano-optical systems with material dispersion. The material dispersion can be described by a rational function for the frequency-dependent permittivity, e.g., by a Drude-Lorentz model or a rational function fit to measured material data. The approach is applied to compute plasmonic resonances of a metallic grating

    An auxiliary field approach for computing optical resonances in dispersive media

    No full text
    We report on an auxiliary field approach for solving nonlinear eigenvalue problems occurring in nano-optical systems with material dispersion. The material dispersion can be described by a rational function for the frequency-dependent permittivity, e.g., by a Drude-Lorentz model or a rational function fit to measured material data. The approach is applied to compute plasmonic resonances of a metallic grating

    Hot Electron Generation through Near-Field Excitation of Plasmonic Nanoresonators

    No full text
    We theoretically study hot electron generation through the emission of a dipole source coupled to a nanoresonator on a metal surface. In our hybrid approach, we solve the time-harmonic Maxwell's equations numerically and apply a quantum model to predict the efficiency of hot electron generation. Strongly confined electromagnetic fields and the strong enhancement of hot electron generation at the metal surface are predicted and are further interpreted with the theory of quasinormal modes. In the investigated nanoresonator setup, both the emitting source and the acceptor resonator are localized in the same volume, and this configuration looks promising to achieve high efficiencies of hot electron generation. By comparing with the efficiency calculated in the absence of the plasmonic nanoresonator, that is, the dipole source is located near a flat, unstructured metal surface, we show that the effective excitation of the modes of the nanoresonator boosts the generation efficiency of energetic charge carriers. The proposed scheme can be used in tip-based spectroscopies and other optoelectronic applications

    Modal expansion of optical far-field quantities using quasinormal modes

    No full text
    We discuss an approach for modal expansion of optical far-field quantities based on quasinormal modes (QNMs). The issue of the exponential divergence of QNMs is circumvented by contour integration of the far-field quantities involving resonance poles with negative and positive imaginary parts. A numerical realization of the approach is demonstrated by convergence studies for a nanophotonic system
    corecore