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nem früheren Promotionsverfahren eingereicht. Mit einer Prüfung meiner Arbeit durch
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Zusammenfassung

Resonanzeffekte treten in allen physikalischen Systemen auf, die durch Wellen beschrie-
ben werden, und sie sind für die Beschreibung von Wellenausbreitung und Interferenz un-
erlässlich. Auf dem Gebiet der Nanophotonik basieren viele Geräte auf den durch Licht-
quellen angeregten Resonanzen mit ihren stark erhöhten elektromagnetischen Feldern.
Die numerische Simulation von Resonanzen ist ein wichtiges Hilfsmittel für die Entwick-
lung und Optimierung der Geräte. Die Resonanzen sind die Lösungen der zeitharmoni-
schen quellenfreien Maxwell-Gleichungen mit Verlustmechanismen. Die entsprechenden
Eigenwertprobleme sind aufgrund der Verluste nicht-Hermitesch, was zu komplexwerti-
gen Eigenwerten führt. Die Materialdispersion, die in der Nanophotonik typischerweise
signifikant ist, führt zu nichtlinearen Eigenwertproblemen.
In dieser Dissertation entwickeln wir einen auf der Riesz-Projektion basierenden An-

satz für die Expansion von elektromagnetischen Feldern, die von Lichtquellen erzeugt
werden, in Resonanzen. Wir berechnen die Riesz-Projektionen durch Konturintegration
in der komplexen Frequenzebene. Die numerische Realisierung basiert im Wesentlichen
auf der Lösung der Maxwell-Gleichungen mit einem Quellterm, das heißt der Lösung
von linearen Gleichungssystemen. Dabei werden die Maxwell-Gleichungen direkt bei den
gegebenen Frequenzen auf den Integrationskonturen ausgewertet, sodass eine Lineari-
sierung der entsprechenden nichtlinearen Eigenwertprobleme nicht erforderlich ist. Das
macht die auf der Riesz-Projektion basierenden Methoden zu einer natürlichen Wahl
für die Behandlung von Eigenwertproblemen aus dem Bereich der Nanophotonik. Wir
erweitern den Ansatz der Riesz-Projektions-Expansion auf optische Größen im Fernfeld,
was aufgrund der räumlichen Divergenz der Resonanzen mit zunehmender Entfernung
von den zugrunde liegenden Resonatoren problematisch ist. Basierend auf den Ideen der
Riesz-Projektions-Expansion entwickeln wir außerdem Methoden zur Berechnung phy-
sikalisch relevanter Eigenwerte und zur Berechnung von Sensitivitäten von Eigenwerten.
Physikalisch relevant bedeutet, dass die Eigenwerte in Bezug auf die Resonanzexpansion
der interessierenden physikalischen Größe signifikant sind.

Durch die Verwendung physikalischer Lösungen der Maxwell-Gleichungen für die Kon-
turintegration haben die entwickelten numerischen Methoden einen starken Bezug zur
zugrunde liegenden Physik. Die Methoden können auf jedes Materialsystem und auf
jede messbare physikalische Größe angewendet werden, die sich aus dem elektrischen
Feld herleiten lässt. Wir wenden die numerischen Methoden auf mehrere aktuelle na-
nophotonische Strukturen an, wie zum Beispiel Einzelphotonenquellen aus dem Bereich
der Quantentechnologie, plasmonische Nanostrukturen, die sich durch nichtlokale Ma-
terialeigenschaften auszeichnen, und Nanoantennen, die auf gebundenen Zuständen im
Kontinuum basieren. Die in dieser Dissertation vorgestellten Ansätze werden für nano-
photonische Systeme entwickelt, lassen sich aber auf jedes Resonanzproblem anwenden.
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Ich möchte außerdem Martin Hammerschmidt meinen herzlichsten Dank aussprechen,
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Gruppe am Zuse Institute Berlin. Ich möchte hier, zusätzlich zu den bereits erwähn-
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gemacht hat.

Ein ganz besonderer Dank geht an meine Frau Lisa. Ohne ihre liebevolle Unterstützung
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Abstract

Resonance effects are ubiquitous in physics and essential for understanding wave prop-
agation and interference. In the field of nanophotonics, devices are often based on the
strong confinement of light by resonances. The numerical simulation of resonances plays
a crucial role for the design and optimization of the devices. The resonances are electro-
magnetic field solutions to the time-harmonic source-free Maxwell’s equations with loss
mechanisms. The corresponding eigenproblems are non-Hermitian due to the losses lead-
ing to complex-valued eigenvalues. The material dispersion, which is typically significant
in nanophotonics, results in nonlinear eigenproblems.
In this thesis, we develop an approach based on Riesz projections for the expansion

of electromagnetic fields caused by light sources into resonances. The Riesz projection
expansion is computed by contour integration in the complex frequency plane. The nu-
merical realization essentially relies on solving Maxwell’s equations with a source term,
meaning solving linear systems of equations. For this, Maxwell’s equations are directly
evaluated at the given frequencies on the integration contours, which implies that lin-
earization of the corresponding nonlinear eigenproblems is not required. This makes
Riesz-projection-based approaches a natural choice for dealing with eigenproblems from
the field of nanophotonics. We further extend the Riesz projection expansion approach
to optical far-field quantities, which is not straightforward due to the spatial divergence
of the resonances with increasing distance from the underlying resonators. Based on the
ideas of the Riesz projection expansion, we introduce approaches for the calculation of
physically relevant eigenvalues and for computing eigenvalue sensitivities. Physically rel-
evant means that the eigenvalues are significant with respect to the resonance expansion
of the physical observable of interest.
By using physical solutions to Maxwell’s equations for the contour integration, the

developed numerical methods have a strong relation to physics. The methods can be ap-
plied to any material system and to any measurable physical quantity that can be derived
from the electric field. We apply the numerical methods to several recent nanophotonic
applications, for example, single-photon sources from the field of quantum technology,
plasmonic nanostructures characterized by nonlocal material properties, and nanoanten-
nas based on bound states in the continuum. The approaches introduced in this thesis
are developed for nanophotonic systems, but can be applied to any resonance problem.
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1 Introduction

Optical technologies play a major role in the development of high-technology devices.
Modern nanofabrication tools enable the scaling of material systems down to the wave-
length scale of visible light, allowing the exploration of new regimes of light-matter
interaction [1–4]. The resulting nanophotonic structures are used, for example, for ul-
trasensitive sensing to detect single molecules [5, 6], for tuning photochemistry in solar
energy devices [7–9], and for designing devices in the emerging field of quantum tech-
nology [10–12].
All these cutting-edge applications are based on highly localized electromagnetic field

energies of resonances excited by light sources [13–15]. Resonance phenomena occur
not only in the form of electromagnetic waves in the field of nanophotonics, but in all
physical systems characterized by waves. Examples include vibrations in mechanical
systems [16, 17], acoustic resonances [18, 19], and scattering resonances in quantum
mechanics [20–24]. The naturally occurring loss mechanisms, such as damping or open
boundaries, cause the solutions of the associated wave equations to decay exponentially
with time. These solutions are given by a superposition of eigenstates, the so-called
quasinormal modes or resonances, where the rate of decay of each state is described
by the imaginary part of the associated eigenvalue. The real parts of the eigenvalues
describe the oscillation rates of the states. The numerical modeling and simulation of the
corresponding eigenproblems is essential for the design and optimization of resonance-
based devices. An important figure of merit for nanophotonic devices is the quality (Q)
factor [25], which is directly linked to the eigenvalues. It can be calculated by the scaled
ratio of the real and imaginary part of an eigenvalue. For low loss systems, the Q-factor
of a resonance represents the relation between stored and dissipated electromagnetic
field energy. Nanoresonators with high Q-factors are used to increase the brightness of
quantum light sources or to enhance the sensitivity of sensors [26]. A further central
figure of merit is the Purcell factor [27], which describes the emission enhancement of
quantum light sources due to their coupling to the underlying resonances [28]. High
Purcell factors are essential for increasing the photon extraction efficiencies of single-
photon sources [29].

In nanophotonics, resonances are electromagnetic waves, which can be computed by
solving the time-harmonic source-free Maxwell’s equations with loss mechanisms [30–
32]. The eigenproblems are non-Hermitian due to the underlying losses. After numer-
ical discretization, they typically have the form Au = ω2B(ω)u, where ω ∈ C is an
eigenvalue and u ∈ C

n is an eigenvector corresponding to ω. The matrices A ∈ C
n×n

and B(ω) ∈ C
n×n are the system matrices. The eigenvalues are called eigenfrequencies

and the eigenvectors, which are the resonances in a finite dimensional basis, are called
eigenmodes. The angular frequency dependence of the mass matrix B(ω) describes the
material dispersion and renders the eigenproblem nonlinear [33, 34]. In nanophotonics,
the material dispersion is often significant and is usually described by rational func-
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tions, for example, Drude-Lorentz models [35, 36] or rational fits to measured material
data [36, 37]. To compute the eigenfrequencies and eigenmodes, the standard approach
is linearization [30–32, 38] with a subsequent application of the Arnoldi method [39] to
the linearized system. In many applications, the dimension of the system matrices is
very large, while only a few eigenmodes are important for the physical characterization
of the underlying problem. The connection between physical properties of a system and
its eigenmodes is given by a resonance expansion, where physical observables are decom-
posed into a sum of weighted eigenmodes. Resonance expansion is a powerful tool for
the investigation of light-matter interaction in nanoresonators and is an active area of
research [15, 28, 38, 40–53].

In the last decade, contour-integral-based approaches for solving eigenproblems have
attracted attention [54–63]. These methods compute contour integrals of the form
∮

C
ωk

(

A− ω2B(ω)
)

−1
fdω, where k ≥ 0, f ∈ C

n is some vector, and C ∈ C is a chosen
integration contour. Quadrature formulas are used to numerically discretize the chosen
contour, where a linear system of equations has to be solved at each integration point.
The vector f is thereby projected onto the eigenspace associated with the eigenfrequen-
cies within the contour. The resulting subspace can then be used to approximate the
eigenfrequencies inside the contour and to approximate the corresponding eigenmodes.
The eigenvector residual function A−ω2B(ω) is directly evaluated at the complex-valued
integration points lying on the contour. In this way, the eigenproblem need not be lin-
earized, making contour integral methods a natural choice for the numerical treatment
of nonlinear eigenproblems. However, in the field of nanophotonics, contour integral
methods are rather rarely used.
Motivated by these findings, we developed contour-integral-based approaches for reso-

nance expansion and for computing eigenfrequencies and eigenmodes in nanophotonics.
This thesis is about these approaches and consists of the following five individual works:

• Ref. [64]: Lin Zschiedrich, Felix Binkowski, Niko Nikolay, Oliver Benson, Günter
Kewes, and Sven Burger. Riesz-projection-based theory of light-matter interaction
in dispersive nanoresonators. Phys. Rev. A 98, 043806 (2018).

Author contributions: L.Z. and S.B. designed the research; L.Z. conceived the
theoretical approach; F.Bi., L.Z., and S.B. developed the numerical method and
wrote the initial manuscript; F.Bi. implemented the numerical method, performed
the numerical simulations, and prepared the figures; All authors discussed the
results and contributed to the final version of the manuscript.

• Ref. [65]: Felix Binkowski, Lin Zschiedrich, Martin Hammerschmidt, and Sven
Burger. Modal analysis for nanoplasmonics with nonlocal material properties.
Phys. Rev. B 100, 155406 (2019).

Author contributions: F.Bi., M.H., and L.Z. designed the research and developed
the numerical method; F.Bi. wrote the initial manuscript, implemented the numer-
ical method, performed the numerical simulations, and prepared the figures; All
authors discussed the results and contributed to the final version of the manuscript.

• Ref. [66]: Felix Binkowski, Fridtjof Betz, Rémi Colom, Martin Hammerschmidt,
Lin Zschiedrich, and Sven Burger. Quasinormal mode expansion of optical far-field
quantities. Phys. Rev. B 102, 035432 (2020).

4



Author contributions: F.Bi., L.Z., and S.B. designed the research; F.Bi., F.Be,
and L.Z. developed the numerical method; F.Bi. wrote the initial manuscript;
F.Bi. and F.Be. implemented the numerical method and performed the numeri-
cal simulations; F.Bi. prepared the figures; All authors discussed the results and
contributed to the final version of the manuscript.

• Ref. [67]: Felix Binkowski, Lin Zschiedrich, and Sven Burger. A Riesz-projection-
based method for nonlinear eigenvalue problems. J. Comput. Phys. 419, 109678
(2020).

Author contributions: F.Bi., L.Z., and S.B. designed the research; F.Bi. developed
the numerical method, wrote the initial manuscript, implemented the numerical
method, performed the numerical simulations, and prepared the figures; All au-
thors discussed the results and contributed to the final version of the manuscript.

• Ref. [68]: Felix Binkowski, Fridtjof Betz, Martin Hammerschmidt, Philipp-Immanuel
Schneider, Lin Zschiedrich, and Sven Burger. Computation of eigenfrequency sen-
sitivities using Riesz projections for efficient optimization of nanophotonic res-
onators. Commun. Phys. 5, 202 (2022).

Author contributions: F.Bi., L.Z., and S.B. designed the research; F.Bi. developed
the numerical method, wrote the initial manuscript, implemented the numerical
method, and prepared the figures; F.Bi. and F.Be. performed the numerical sim-
ulations; All authors discussed the results and contributed to the final version of
the manuscript.

We proposed a new resonance expansion approach based on contour integrals [64]. To
obtain the expansion terms, projections onto eigenspaces, so-called Riesz projections,
corresponding to eigenfrequencies of Maxwell’s equations are used. Then, we investi-
gated optical properties of nonlocal material systems [65], where linearization of the
underlying nonlinear eigenproblems is not possible with standard eigensolvers. A con-
tour integral method known from the literature was used to calculate eigenfrequencies
and eigenmodes, and Riesz projections were applied for resonance expansion. Based on
the knowledge gained through this research, we developed an approach for resonance
expansion of optical quantities at large distances from the nanoresonators [66]. This is
not straightforward because the eigenmodes diverge exponentially with increasing dis-
tance from the resonators due to the underlying loss mechanisms. Riesz projections
were applied to overcome this problem. We further developed an algorithm based on
Riesz projections to calculate physically relevant eigenfrequencies [67]. Specific eigenfre-
quencies are prioritized in the proposed algorithm by selecting physical source terms as
vector f for the contour integration. The algorithm was applied to nanophotonic and
quantum mechanical problems. We also introduced a Riesz-projection-based approach
to compute eigenfrequency sensitivities [68]. The approach exploits direct differentia-
tion, which enables an efficient numerical implementation. This was demonstrated by
an optimization of a topical nanophotonic resonator with respect to several shape pa-
rameters.
This thesis contributes to the numerical modeling and simulation of resonance phe-

nomena occurring in the field of nanophotonics. The approaches developed focus on
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the physical quantities to be studied. Nanophotonic systems can be analyzed by res-
onance expansion of physical observables and by computation of physically relevant
eigenfrequencies and their sensitivities. Contour integration allows the investigation of
any physical observable that can be derived from the electric field in arbitrary material
systems. Moreover, the numerical implementation is straightforward, since contour in-
tegration essentially relies on solving linear systems of equations. Corresponding solvers
are implemented in state-of-the-art software libraries. The general applicability and ease
of numerical implementation make the approaches presented in this thesis easily accessi-
ble to researchers from the computational nanophotonics community. Since the methods
can be applied not only to resonance problems from the field of nanophotonics, but to
any resonance problem, they can also be used in other areas of physics.
This thesis is divided into five chapters assigned to the five individual works [64–68].

Each chapter begins with a connecting text followed by one of the works. Within the
connecting texts, important aspects, which are essential for the overall understanding of
the thesis, are presented and important physical quantities are introduced and defined.
The thesis concludes with a summary of all individual works. In the appendix, the
three further individual works [69–71] of the doctoral candidate are presented, which are
directly related to the thesis.
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2 Riesz projection expansion for the

investigation of light-matter interaction

In nanophotonics, in the steady-state regime, light scattering by an open material system
can be described by the time-harmonic Maxwell’s equation in second order form,

∇× µ(r, ω0)
−1∇×E(r, ω0)− ω2

0ϵ(r, ω0)E(r, ω0) = iω0J(r), (2.1)

equipped with transparent boundary conditions, where E(r, ω0) ∈ C
3 is the electric field,

J(r) ∈ C
3 is a source term corresponding to an optical source, ω0 ∈ R is the angular

frequency, and r ∈ R
3 is the spatial position. For optical frequencies, the permeability

typically equals the vacuum permeability µ0. The permittivity ϵ(r, ω0) = ϵr(r, ω0)ϵ0,
where ϵr(r, ω0) is the relative permittivity and ϵ0 is the vacuum permittivity, describes
the material dispersion and the spatial distribution of material. Problems given by
Equation (2.1) are called scattering problems. Note that, in the following, we consider
losses due to open material systems. However, the proposed approaches are not limited
to this loss channel. The inclusion of damping is also possible.
Resonance expansion approaches give a representation of the scattering solutionE(r, ω0)

by a sum of terms related to the resonances of the underlying system, e.g.,

E(r, ω0) =
M
∑

m=1

αm(ω0)Ẽm(r) +R(r, ω0), (2.2)

where αm(ω0) ∈ C are the expansion coefficients and R(r, ω0) ∈ C
3 is the remainder of

the expansion. The eigenmodes Ẽm(r) ∈ C
3 are solutions to the eigenproblem

∇× µ−1
0 ∇× Ẽm(r)− ω̃2

mϵ(r, ω̃m)Ẽm(r) = 0 (2.3)

with transparent boundary conditions, where ω̃m ∈ C are the corresponding eigenfre-
quencies. Problems given by Equation (2.3) are called resonance problems. The typically
applied framework [48] for the computation of the resonance expansion given by Eq. (2.2)
is the computation of the eigenmodes Ẽm(r) by solving Eq. (2.3), an appropriate normal-
ization of the eigenmodes, and the calculation of the expansion coefficients αm(ω0) using,
e.g., a scalar product. This framework relies on the chosen linearization of the nonlinear
eigenproblem given by Eq. (2.3), which is often based on the underlying physics and
called auxiliary field approach [38]. The reader is referred to Section 8.1 for the report
on such an approach. Note that the resonance expansion given by Eq. (2.2) is not unique.
Different formulas can be used for the calculation of the expansion coefficients [48].
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In Ref. [64], we develop a resonance expansion approach based on Riesz projections,

E(r, ω0) =
M
∑

m=1

Em(r, ω0) +R(r, ω0),

Em(r, ω0) = −
1

2πi

∮

Cm

E(r, ω)

ω − ω0

dω ∈ C
3, R(r, ω0) =

1

2πi

∮

Cnr

E(r, ω)

ω − ω0

dω ∈ C
3.

(2.4)

Each contour Cm ∈ C enclose one eigenfrequency ω̃m and thus the expansion terms
Em(r, ω0), which are Riesz projections [22], are directly related to the eigenfrequen-
cies. Moreover, expansion coefficients αm(ω0) from Eq. (2.2) can be derived such that
there exists a relation between Riesz projections and normalized eigenmodes, given by
Em(r, ω0) = αm(ω0)Ẽm(r) [72]. The contour Cnr ∈ C corresponds to the remain-
der of the expansion, which also comprises the nonresonant contributions. The terms
Em(r, ω0) and the remainderR(r, ω0) are computed by solving scattering problems given
by Eq. (2.1) for complex-valued frequencies ω lying on the contours Cm and Cnr, respec-
tively. In this way, the resonance problem given by Eq. (2.3) need not be solved, i.e.,
linearization of the nonlinear eigenproblem is not required. With regard to the nota-
tion, we note that, exclusively in Ref. [64], we perform the contour integration in the
ω2 plane. This has no effect on the derivation of the approach or on the calculation of
the expansion terms. The reason for this choice is the appearance of ω2 in Maxwell’s
equations.
We demonstrate the Riesz projection expansion for the electromagnetic field emit-

ted by a quantum light source with material dispersion. The source is a nitrogen-
vacancy (NV) center [73] in a diamond nanodisk. Such defects in diamond are topical
candidates for single-photon sources [74]. We model the source with a dipole emitter
J(r) = jδ (r− r′), where δ(r − r′) is the Dirac delta distribution, r′ is the location of
the dipole emitter, and j is the dipole amplitude vector. We compute the resonance
expansion of the Purcell factor,

Γ(ω0) = −
1

2
Re

(

E(r′, ω0) · j
∗
)

/Γb, (2.5)

where Γb is the decay rate of the dipole emitter in homogeneous background material [28],
and we identify the eigenmodes which are significant for the Purcell factor of the quantum
light source.
To numerically realize the Riesz projection expansion given by Eq. (2.4) as well as

the other contour integral approaches presented in the following chapters, we spatially
discretize Eq. (2.1) with the finite element method (FEM) [75–77] using the software
package JCMsuite [78, 79]. The transparent boundary conditions are implemented
using perfectly matched layers [80, 81]. The FEM discretization of Eq. (2.1) leads to
the linear system of equations

(

A− ω2
0B(ω0)

)

u = f(ω0), where A ∈ C
n×n and B(ω0) ∈

C
n×n are the sparse FEM system matrices and f(ω0) ∈ C

n is a vector containing the
source term. With u ∈ C

n as the electric field in a finite dimensional FEM basis,
we obtain the discretized form of the Riesz projection expansion. For example, the
discretized expansion terms are given by

um = −
1

2πi

∮

Cm

u

ω − ω0

dω = −
1

2πi

∮

Cm

(

A− ω2B(ω)
)

−1
f(ω)

ω − ω0

dω ∈ C
n,

8



where the linear systems of equations
(

A− ω2B(ω)
)

u = f(ω) are solved using the scat-
tering solver within JCMsuite for complex-valued frequencies ω lying on the integration
contours Cm. The scattering solver is based on direct solvers for sparse linear systems
of equations [82, 83]. For the contours, a circular or elliptical shape is chosen and the
integrals are numerically realized using the trapezoidal rule, which leads to exponential
convergence with respect to the number of integration points [84].

In the following, Ref. [64] is reprinted with permission from [Lin Zschiedrich, Felix
Binkowski, Niko Nikolay, Oliver Benson, Günter Kewes, and Sven Burger. Riesz-
projection-based theory of light-matter interaction in dispersive nanoresonators. Phys.
Rev. A 98, 043806 (2018). doi: 10.1103/PhysRevA.98.043806.] Copyright 2018 by the
American Physical Society.
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We introduce a theory to analyze the behavior of light emitters in nanostructured environments rigorously.

Based on spectral theory, the approach opens the possibility to quantify precisely how an emitter decays to

resonant states of the structure and how it couples to a background, also in the presence of general dispersive

media. Quantification on this level is essential for designing and analyzing topical nanophotonic setups, e.g., in

quantum technology applications. We use a numerical implementation of the theory for computing modal and

background decay rates of a single-photon emitter in a diamond nanoresonator.

DOI: 10.1103/PhysRevA.98.043806

Introduction. Resonance phenomena are omnipresent in

physics. Storage and transfer of energy between different

resonant states allows one to explore wave effects in atomic,

molecular, and optical physics as well as in nuclear and

condensed-matter physics and in other fields of science. Op-

tical resonators are scaled down to the wavelength scale and

below by using modern nanotechnology, as demonstrated in

various material systems [1,2], including plasmonic [3] and

dielectric structures [4]. Placing pointlike sources in the vicin-

ity of such nanoresonators or antennas enables exploration of

new regimes of light-matter interaction. Examples are single-

photon emission with high directivity [5–7], nanoscopic plas-

mon lasers [8,9], and modification of chemical reaction rates

by exploiting strong coupling in microcavities [10].

Theoretical models of light-matter interaction are needed

to understand and optimize the performance of related pho-

tonic devices. Maxwell’s equations can be solved directly to

obtain solutions for the electromagnetic field. For a deeper

insight into physical properties, it is a common approach to

use a modal description. The resonant response of metallic

nanostructures is governed by surface plasmon polaritons.

High-index dielectrics hosts electric and magnetic Mie-like

modes which can be exploited in antenna design [4]. For

understanding the interaction of emitters with nanoresonators,

it is essential to precisely describe the coupling of the emit-

ter to specific modes [11,12]. This coupling is quantified

by individual modal Purcell factors [13,14]. Thus, in most

approaches, the study of the (eigen-)modes and associated

eigenfrequencies of the resonating structure is essential.

The simplest model for modal analysis, a closed nondis-

sipative system, yields a Hermitian linear operator with a

complete set of orthogonal eigenmodes. By duality and based

on a scalar product, these eigenmodes also serve as projectors

which allow for an expansion of the electromagnetic field

into a sum of eigenmodes to characterize the light-matter

interaction. In the past decades, the more challenging study of

open systems, which are usually described by non-Hermitian

operators, is an often addressed research topic in vari-

ous applications including quantum mechanics [15–18] and

nano-optics [14,19–22]. In a nutshell, the concept of eigen-

modes has been generalized to the theory of resonant states,

also called quasinormal modes (QNMs). QNMs are orthogo-

nal with respect to an unconjugated scalar product [23] which

allows identification of QNMs with projectors again. Also, in

the case of dispersive materials which are ubiquitously present

in nano-optical resonators [3,24], there exist approaches for

QNM expansion [14,21]. However, the orthogonality and

normalization of the QNMs, especially in the case of dis-

persive media, are still under active research and discussed

controversially in the literature [14,21,25–28]. The discrete

set of QNMs is supplemented by the continuous spectrum

of the operator capturing the nonresonant background scat-

tering [29]. State-of-the-art approaches using QNM expan-

sion do not incorporate the continuous spectrum. These can

well be applied when coupling to the background is negli-

gible [14]. However, important application classes rely on

designs with significant background coupling which is present

when low-quality (Q) factor resonances are involved [13].

For realizing integrated single-photon sources, the involved

resonant states are preferably at low Q factor, enabling fast,

pulsed operation [30]. Also, for modifying photochemical

reactions, coupling of molecules to resonant states with a

low Q factor is used due to better accessibility compared to

high Q factor resonances [10]. Theoretical description and

numerical optimization of related setups therefore essentially

require precise treatment and precise distinction of coupling

to the background and to the resonant states.

Riesz projections (RPs) can be used to compute these

quantities in an elegant way. RPs are a well-known concept

in spectral theory [15] and they do not rely on orthogonality

relations and the explicit knowledge of eigenfunctions. RPs

are based on contour integration and provide a powerful

means to analyze the spectrum of partial differential operators.

Note that parallel to this work, a scalar product involving

auxiliary fields has been proposed to ensure the orthogonality

of QNMs for typical dispersive media [31].

In this work, we present a theory for modeling dispersive

light-matter interaction based on RPs. We show that RPs can

2469-9926/2018/98(4)/043806(5) 043806-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043806&domain=pdf&date_stamp=2018-10-03
https://doi.org/10.1103/PhysRevA.98.043806


LIN ZSCHIEDRICH et al. PHYSICAL REVIEW A 98, 043806 (2018)

FIG. 1. Schematic decomposition of the electromagnetic field

caused by a dipole emitter in the vicinity of a nanoresonator. (a) Total

electromagnetic field. (b) A resonance mode of the nanoresonator.

(c) Nonresonant components of the electromagnetic field. This part

includes also the singularity resulting from the dipole source.

also be used to model the nonresonant background interaction

in a closed form. The theory allows for a straightforward

numerical implementation which essentially requires solving

time-harmonic scattering problems for complex frequencies.

We apply the method to compute modal decay rates of a dipole

emitter embedded in a diamond nanodisk antenna showing

a weak coupling to the QNMs and a significant background

coupling.

Riesz projection expansion. In the following, we consider

electromagnetic fields in the vicinity of optical nanostructures,

as illustrated in Fig. 1. The total field, sketched in Fig. 1(a),

is decomposed into resonant and nonresonant components

[see Figs. 1(b) and 1(c)]. In the steady-state regime, the

corresponding electric fields E(r, ω) are solutions to the time-

harmonic Maxwell’s equations in the second-order form

∇ × μ−1
∇ × E(r, ω) − ω2ε(ω)E(r, ω) = iωJ(r), (1)

where ω ∈ C is a complex angular frequency. The material

dispersion is described by the permittivity tensor ε(ω), and the

permeability tensor μ typically equals the vacuum permeabil-

ity μ0. The source term J(r) relates to impressed currents. For

open problems, Eq. (1) is equipped with outgoing radiation

conditions which can be realized by complex scaling in space

of the corresponding partial differential operator. Incident ex-

terior light sources can be incorporated in J(r). Physically rel-

evant scattering solutions have real frequencies ω0 ∈ R. The

fields E(r, ω) can be regarded as an analytical continuation of

E(r, ω0) into the complex plane. In this context, the QNMs

correspond to complex frequencies ωm ∈ C, m = 1, . . . ,M ,

where E(r, ω) has a resonance pole, i.e., a singularity.

To decompose E(r, ω0) into its resonant and nonresonant

parts, we consider the z = ω2 plane and write E(r, z) =

FIG. 2. Contour integration in the complex ω2 plane for com-

puting the Riesz projection expansion, Eq. (3). The red crosses

represent resonance poles ω2
m, the blue curves are the integration

curves for Eqs. (2)–(5). (a) Top: Integration path C0 around ω2
0 , see

Eq. (2). Bottom: Deforming the integration path without enclosing

resonance poles does not modify the integral. (b) Integration curves

Cm in negative direction for computing Riesz projections, see Eq. (4).

(c) Outer integration path Cnr for quantifying the interaction with

nonresonant components, see Eq. (5).

E(r, ω =
√

z). Cauchy’s residue theorem gives

E(r, ω0) =
1

2πi

∮
C0

E(r, z)

z − ω2
0

dz, (2)

where C0 is a closed curve around ω2
0 so that E(r, z) is holo-

morphic inside of C0, as shown in Fig. 2(a). Then, deforming

the path of integration so that an outer curve Cnr includes ω2
0,

the resonance poles ω2
1, . . . , ω

2
M and no further poles yields

∮
C0

E(r, z)

z − ω2
0

dz = −
∮

C1

E(r, z)

z − ω2
0

dz − · · · −
∮

CM

E(r, z)

z − ω2
0

dz

+
∮

Cnr

E(r, z)

z − ω2
0

dz,

see Figs. 2(b) and 2(c). Thereby, we obtain the expansion

E(r, ω0) =
M∑

m=1

Em(r, ω0) + Enr(r, ω0), (3)

where the fields

Em(r, ω0) = −
1

2πi

∮
Cm

E(r, z)

z − ω2
0

dz (4)
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are related to the resonance poles ω2
1, . . . , ω

2
M . The field

Enr(r, ω0) =
1

2πi

∮
Cnr

E(r, z)

z − ω2
0

dz (5)

quantifies the nonresonant components and contributions

from possible resonance poles outside of the integration curve

Cnr. It has to be ensured that Cnr does not cross the branch cut

in the z = ω2 plane starting from z = 0. The fields in Eq. (4)

are essentially RPs applied to Eq. (1); see results from spectral

theory [15]. The RP expansion offers a general physical

understanding of resonance phenomena without the need to

normalize exponentially diverging fields. Clearly, the integrals

in Eqs. (4) and (5) are independent of the particular choice

of the contours Cm and Cnr. Therefore, precise locations of

the resonance poles are not required. Also, when a contour

includes multiple resonance poles the contour integral gives

the projector onto the space of corresponding QNMs. In this

way, it is possible to construct projectors for frequency ranges

without detailed a priori knowledge. This case implies that a

specific choice of the number M in Eq. (3) is not necessary.

RP expansion can be applied to any light source; however,

of special interest are pointlike sources. These can be modeled

as dipole emitters J(r0) = jδ(r − r0), where j = −iωp with

dipole moment p at position r0. Its enhanced emission rate in

the vicinity of a nanoresonator is characterized by the Purcell

factor [13], also termed normalized decay rate,

�(ω0) = − 1
2
Re[E(r0, ω0) · j∗]/�b, (6)

where �b is the decay rate of the emitter in homogeneous

background material [14,32]. To quantify the coupling of the

emitter to each of the single RPs Em(r, ω0), we introduce the

modal normalized decay rate

�m(ω0) = − 1
2
Re[Em(r0, ω0) · j∗]/�b. (7)

The nonresonant normalized decay rate is analogously given

by

�nr(ω0) = − 1
2
Re[Enr(r0, ω0) · j∗]/�b. (8)

Numerics. For the numerical realization of the RP expan-

sion, we calculate the contour integrals in Eqs. (4) and (5)

using a simple trapezoidal rule. At each integration point, it

is required to solve Eq. (1) for a complex frequency which is

done with a finite-element method (FEM solver, JCMSUITE).

Perfectly matched layers (PMLs) [33] are used to enforce

outgoing radiation conditions. To ensure an accurate FEM

discretization for singular dipole sources, we use a subtrac-

tion field approach E(r, ω) = Eb(r, ω) + Ec(r, ω). The field

Eb(r, ω) is the analytically given solution to a dipole source

in homogeneous bulk material. The correction field Ec(r, ω) is

suitable for an accurate FEM discretization [32]. Furthermore,

for problem setups with geometries of cylindrical symmetry,

we reduce the three-dimensional computation to a series of

two-dimensional simulations with angular modes einϕϕ . The

resonance poles are computed with a linear eigenvalue solver

using an augmented field formulation. However, as mentioned

above, the precise locations of the eigenvalues could be re-

placed by rough guesses. Self-adaptive approaches can be

used for constructing suitable integration paths and to avoid

crossing resonance poles. To run scans of the frequency ω0

Dipole Emitter(a)

Diamond 
Nanodisk

Air

 

(b)

(d)

(c)

(e)

13

0

FIG. 3. (a) Sketch of a diamond nanodisk antenna (diameter

400 nm, height 160 nm) in air with an embedded dipole emitter

placed 15 nm below the upper surface and on the cylindrical symme-

try axis (z axis). The dipole with normalized strength is oriented in x

direction and oscillates at frequency ω0 = 2πc/455 nm. (b) Log plot

(a.u.) of the total electric field intensity. (c)–(e) Log plots (a.u.) of

the electric field intensity of the three RPs for the complex eigen-

frequencies ω1 = 2πc/(406 + 16i nm), ω2 = 2πc/(454 + 13i nm),

and ω3 = 2πc/(655 + 55i nm), respectively.

in the range [ωmin, . . . , ωmax], note that the integrand in the

RPs, Eq. (4), only depends on ω0 by the factor 1/(z − ω2
0 ).

Therefore, for the whole scan, the fields E(r, ω) need to be

evaluated only once at each integration point. Furthermore,

all calculations can be performed in parallel. Due to these

properties, the numerical realization is remarkably fast. We

mention that RPs have also been used for algebraic eigenvalue

solvers [34–36].

Application. Next, we apply the presented method to

a highly topical example: a stable solid-state emitter in a

nanoantenna. There is an urgent need for such systems to

be used as single-photon sources for optical quantum tech-

nologies [37]. Room-temperature operation and directional

emission at high rate are mandatory. As diamond is known

to host various interesting defects; we consider a setup where

a nitrogen-vacancy (N-V) center [38] is hosted in a (di-

electric) diamond nanoantenna. An all-diamond realization

would be ultracompact and ideal for large-scale integration.

The specific geometry is depicted in Fig. 3(a). The dipole

emitter is placed on the symmetry axis and polarized in the

xy plane; therefore only angular modes with nϕ = ±1 are

populated. The diamond permittivity ε(ω) is described by

a two-pole Lorentz model ε(ω) = ε0(1 + εp1
+ εp2

), where

εp1,2
= �ε1,2

ω2
p1,2

/(ω2
p1,2

− 2iωγ − ω2), with �ε1
= 0.3306,

�ε2
= 4.3356, ωp1

= 2πc/175 nm, ωp2
= 2πc/106 nm, and

damping γ = 0 [39].

We investigate the device within the wavelength range of

λ0 ∈ [400 nm, . . . , 800 nm]. For computing the RPs, we use

four integration points in Eq. (4). Figure 4(a) shows the modal

normalized decay rates �m of the three RPs corresponding

to the resonance poles with smallest imaginary parts. Each

spectrum shows a maximum at the wavelength corresponding
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(b)(a)

(c)

(e)

(d)

FIG. 4. Numerical results for the nanoantenna shown in Fig. 3(a).

(a) �m spectra of the three dominant RPs from Figs. 3(c)–3(e).

(b) Normalized decay rates: � (quasiexact solution),
∑

m �m +
�nr (complete RP expansion),

∑M

m=1 �m (RPs for first M reso-

nance poles). (c) Resonance poles of the nanoresonator and in-

tegration curves for computing �m (Cm not to scale) and �nr .

(d) Convergence of �nr with respect to Cnr: Maximum relative error

(
∑8

m=1 �m + �nr − �)/� as a function of the number of integration

points [integration path as in (c)]. (e) Convergence of �2(ω0 =
2πc/455 nm) with respect to the numerical parameters of the con-

tour integration: Relative error of �2 as a function of the number

of integration points, for different integration paths (circle C2 with

radii r where �ω2 = 5 × 1029 s−2), reference solution computed

with r = �ω2/4, and 64 integration points.

to the real part of the respective pole. The highest decay

rate is observed at around λ0 = 455 nm. The RPs at ω0 =
2πc/λ0 for three significant eigenfrequencies ωm are shown in

Figs. 3(c)–3(e). For comparison, the total field solution com-

puted from Eq. (1) is shown in Fig. 3(b). We note that for the

investigated case where a single pole is enclosed in each con-

tour integral, the RP is a multiple of the corresponding QNM.

However, as mentioned above, from the QNMs only it is not

possible to compute modal expansion coefficients without an

orthogonality relation, i.e., without scalar products, yielding a

separation of the Maxwell’s equations in a modal sense. The

presented approach is not restricted to specific geometrical

setups. Therefore, also handling complex environments of the

nanodisk antenna, including, e.g., layered structures, waveg-

uides, and arbitrarily shaped objects, is straightforward.

Figure 4(b) validates the completeness of the expansion

in Eq. (3). The quasiexact solution � is gained from solv-

ing the scattering problem in Eq. (1) and applying Eq. (6).

Using Eq. (4) and Eq. (7) for the first three resonance poles

yields an incomplete RP expansion
∑3

m=1 �m which already

reproduces the characteristics of �. Using the first eight poles,

the agreement of the incomplete RP expansion
∑8

m=1 �m with

the quasiexact solution improves. Adding the nonresonant part

�nr, calculated with Eq. (8), gives the theoretically expected

match to the quasiexact solution. Here, for the computation

of Enr(r, ω0) in Eq. (5), we use 128 integration points. We

attribute the fact that the nonresonant components are of

significant quantitative impact to the nature of the diamond

nanodisk antenna. Due to its relatively low refractive index,

the structure hosts many weakly localized modes of low Q

factor. Thus, the coupling to the background continuum of

modes plays an important role for the Purcell factor.

Figure 4(c) details the position of the resonance poles

in the complex plane and the used contour integral curves

for this example. We distinguish between physical resonance

poles and so-called PML poles [29,31]. Physical poles are

stable with respect to a change of the numerical parameters

and are therefore related to the discrete part of the operator

spectrum. The PML poles stem from the continuous part of

the spectrum of the operator and yield algebraic eigenvalues

due to the discretization and truncation of the open resonator

system. In this sense, the integral over the outer contour Cnr

comprises the continuous part of the operator (PML modes) as

well as further QNMs which might be present outside of Cnr.

Note that the bulk emission term Eb(r, ω) in the subtraction

field approach E(r, ω) = Eb(r, ω) + Ec(r, ω) is an analytic

function in the entire complex plane. Hence, Eb(r, ω) does not

contribute to the RPs Em(r, ω0), which are therefore smooth

fields, cf., Figs. 3(c)–3(e), whereas Enr(r, ω0) produces the

singularity.

The numerical efficiency of the RP expansion depends on

the numerical convergence of the contour integral with respect

to the number of integration points. For the outer contour Cnr,

as plotted in Fig. 4(c), we observe convergence with respect

to the number of integration points, see Fig. 4(d). For the

contours of the single RPs, we verified that four integration

points are sufficient to reach a relative accuracy of the derived

modal decay rate better than 10−6, see Fig. 4(e).
Conclusions. In conclusion, we presented a theoretical

approach to explain the coupling of light sources to dispersive
nanoresonators by means of an electromagnetic field expan-
sion with Riesz projections. The method allows for the precise
definition and computation of the field expansion into modal
and background parts and for the evaluation of linear func-
tionals, e.g., modal and background decay rates. We applied
the approach to model the coupling of an emitting defect
center in diamond to a nanodisk antenna supporting several
weakly localized resonant states. The method is applicable
to systems with any material dispersion obeying Kramers-
Kronig relation. We therefore expect that the approach will
prove especially useful for understanding and designing novel
photonic devices with material properties that can only be
accurately modeled using high-order rational fits to measured
data. Riesz projection expansion further establishes a route
for quantitative modal analysis of omnipresent nano-optical
systems with relevant nonresonant background. The presented
concepts may also be applied to explore open resonators in
other fields of physics, e.g., in phononic structures [40] and
acoustic metamaterials [41].
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3 Nanoresonators with nonlocal material

properties

In metal nanoresonators, the material dispersion can usually be described by Drude-
Lorentz models [35, 36, 85]. The interaction of light with the free electron gas of the
metal takes place locally. Numerical implementations of linearizations of the result-
ing nonlinear eigenproblems are available in state-of-the-art eigensolvers for Maxwell’s
equations [30–32]. However, when the nanostructures are only a few nanometers in size,
nonlocal material models are required [86]. A typically applied nonlocal model is the
hydrodynamic Drude model [86–91], which considers the motions in the electron gas as
a hydrodynamic flow. Numerical implementations for such material models are usually
not available in standard eigensolvers.
In Ref. [65], we apply contour integral methods for the investigation of optical reso-

nances in nonlocal material systems. We implement the coupled system of equations

∇× µ−1
0 ∇×E(r, ω0)− ω2

0ϵ0ϵ∞E(r, ω0) = iω0Jhd(r, ω0) + iω0J(r), (3.1)

β2∇ (∇ · Jhd(r, ω0)) + ω0 (ω0 + iγ)Jhd(r, ω0) = iω0ω
2
pϵ0E(r, ω0) (3.2)

with appropriate boundary conditions, where E(r, ω0) ∈ C
3 is the electric field and

Jhd(r, ω0) ∈ C
3 is the nonlocal hydrodynamic current density [89, 90]. The damping

constant γ and the plasma frequency ωp correspond to the local Drude model ϵd(ω0) =
ϵ0

(

ϵ∞ − ω2
p/

(

ω2
0 + iγω0

))

, where ϵ∞ is the relative permittivity at infinity. The factor β
is a system constant. Note that, when β → 0, the coupled system simplifies to Maxwell’s
equation given by Eq. (2.1).

We apply the contour integral method proposed in Ref. [56] to compute the eigenmodes
and eigenfrequencies of a nanowire [88]. For this, we implement the coupled system
given by Eq. (3.1) and Eq. (3.2) and solve the resulting linear system of equations for
random vectors, where the system matrix depends on the frequency lying on the chosen
integration contour and the random vectors are frequency independent. Furthermore, we
extend the Riesz projection expansion approach given by Eq. (2.4) so that a resonance
expansion of the extinction cross section [89] can be performed. Due to the dependence
of the extinction cross section on the complex conjugated electric field, the complex
conjugated eigenfrequencies must also be considered for the expansion. With the Riesz
projection expansion of the extinction cross section, we identify the eigenmodes which
are important for understanding the physics of the nanowire.
In the following, Ref. [65] is reprinted with permission from [Felix Binkowski, Lin

Zschiedrich, Martin Hammerschmidt, and Sven Burger. Modal analysis for nanoplas-
monics with nonlocal material properties. Phys. Rev. B 100, 155406 (2019). doi:

10.1103/PhysRevB.100.155406.] Copyright 2019 by the American Physical Society.
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Plasmonic devices with feature sizes of a few nanometers exhibit effects which can be described by the

nonlocal hydrodynamic Drude model. We demonstrate how to exploit contour integral methods for computing

eigenfrequencies and resonant states of such systems. We propose an approach for deriving the modal expansion

of relevant physical observables. We use the methods to perform a modal analysis for a metal nanowire. All

complex eigenfrequencies in a large frequency range and the corresponding resonant states are computed. We

identify those resonant states which are relevant for the extinction cross section of the nanowire.

DOI: 10.1103/PhysRevB.100.155406

I. INTRODUCTION

Nanofabrication technologies allow for a rapid progress in

engineering nano-optical devices [1]. Plasmonic resonances

are the center of attention for many topical applications

exploring new regimes of physics. Examples comprise the

demonstration of plasmonic lasers [2], tailoring light emission

of nanoantennas [3,4], probing single molecules and nanopar-

ticles by Raman scattering [5], plasmonic photochemistry [6],

and quantum emitters interacting with metal nanoresonators

[7].

An adequate description of material dispersion plays an

important role for the investigation of light-matter interac-

tion in plasmonic structures [8]. In many cases, the material

dispersion can be described by the Drude-Lorentz model or

by a rational function fit to measured material data [9,10].

Such models are based on spatially local interactions between

the light and the free electron gas of the plasmonic scatterers

[11]. When the scatterers are at the size of a few nanometers,

nonlocal material models are required [12]. These models

lead to additional resonances of the electromagnetic field with

sub-nm wavelengths. Recently, surface plasmon resonance

blueshifts have been observed in metal nanoparticles [13,14]

which could be explained [15] using the nonlocal hydrody-

namic Drude model (HDM) [16]. This model assumes that the

motion of the electron gas behaves as a hydrodynamic flow

and allows for the investigation of nonlocal physical effects

[17–23].
For the study of physical phenomena in nanoplasmonic

systems, a deeper understanding of the effects based on the
HDM is required. A modal description is the most instruc-
tive approach [24,25]. In the case of local material models,
numerically computed resonant states of plasmonic systems
have been successfully used to derive modal expansions
[26–29]. However, in the case of the HDM, a coupled sys-
tem of equations has to be solved [30–33]. To the best of
our knowledge, for this system, the computations of eigen-
frequencies in a large frequency range with corresponding
resonant states and modal expansions have not yet been
reported.

In this work, we investigate plasmonic resonances based on

the HDM. We present a contour-integral-based framework for

a modal analysis. Typical physical observables are sesquilin-

ear forms which involve a complex conjugation of the solution

fields. We propose a general approach for the computation

of modal sesquilinear quantities. The framework is applied

to calculate the eigenfrequencies and corresponding resonant

states of a metal nanowire. Furthermore, the modal extinction

cross section of the nanowire illuminated by plane waves is

computed. This allows one to classify the resonant states of

the nanowire into states which couple to the light sources and

into states which have no contribution to the extinction cross

section.

This work is structured as follows. Section II introduces a

coupled system of equations describing the HDM and summa-

rizes numerical methods for modal analysis. In the subsection

Modal expansion of sesquilinear quantities, we extend the

framework of the Riesz projection expansion (RPE) [28] in

order to obtain modal expansions of physical observables,

such as the extinction cross section. Section III applies these

methods for an investigation of the resonances of a metal

nanowire. Section IV concludes the study.

II. PLASMONIC RESONANCES BASED ON THE

HYDRODYNAMIC DRUDE MODEL

The HDM is based on the interaction of a nonlocal polar-

ization current and its resulting electric field. In the frequency

domain and for nonmagnetic materials, this is described by

the coupled system of equations,

∇ × μ−1
0 ∇ × E(r, ω) − ω2εloc(r, ω)E(r, ω)

= iωJhd(r, ω) + iωJ(r, ω), (1)

β2
∇(∇ · Jhd(r, ω)) + ω(ω + iγ )Jhd(r, ω)

= iωω2
pε0E(r, ω), (2)

for the electric field E(r, ω) and the nonlocal hydrody-

namic current density Jhd(r, ω), where J(r, ω) is a given

2469-9950/2019/100(15)/155406(6) 155406-1 ©2019 American Physical Society
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(a)

(b)

FIG. 1. Schematics of a metal nanowire illuminated by a plane

wave of wavelength λ0. Electric field intensity sketched on a cut

through the nanowire. (a) Nearly constant electric field intensity in

case of the local Drude model. (b) Radially oscillating field pattern

in case of the nonlocal hydrodynamic Drude model.

impressed current density, ω is the frequency, εloc(r, ω) is

the permittivity resulting from the local material response,

ε0 is the vacuum permittivity, and μ0 is the vacuum per-

meability. The damping constant γ and the plasma fre-

quency ωp correspond to the local Drude model εd(ω) =
ε0(ε∞ − ω2

p/(ω2 + iγω)), where ε∞ is the relative permittiv-

ity at infinity. The factor β =
√

3/5 vF relates to the Fermi

velocity vF [16].

The nonlocal material response is caused by Jhd(r, ω),

which affects the permittivity function for the free elec-

tron gas. If β → 0, then the coupled system simplifies to

Maxwell’s equations for the local Drude model. For an il-

lustration of the effect of the HDM, a nanowire excited by

a plane wave is sketched in Fig. 1. While, for the local Drude

model, the electric field intensity inside of the nanowire is

nearly constant, the electric field pattern is radially oscillating

considering the HDM [see Figs. 1(a) and 1(b), respectively].

The reader is referred to [31,32] for a detailed derivation

of Eqs. (1) and (2) including the applied assumptions and

approximations.

Physical scattering solutions E(r, ω0) and Jhd(r, ω0) of the

coupled system can be obtained for real frequencies ω0 ∈
R. The eigenfrequencies are defined as the complex reso-

nance poles ω̃k ∈ C of the analytical continuation of E(r, ω0)

and Jhd(r, ω0) into the complex plane yielding E(r, ω) and

Jhd(r, ω), where ω ∈ C [28]. The resonant states, also called

eigenmodes, of the coupled system correspond to these eigen-

frequencies.

A. Numerical methods for modal analysis

The contour integral method BEYN’S ALGORITHM [34] is

applied to numerically solve the nonlinear eigenproblem [35]

corresponding to the coupled system given by Eqs. (1) and

(2). Contour integral methods for such problems require the

definition of an integration path in the complex frequency

plane which encloses the eigenfrequencies corresponding to

the eigenmodes of interest. The numerical integration along

this contour projects vector fields onto the space spanned by

these eigenmodes. In this way, an approximate eigenspace is

constructed. Then, e.g., the methods proposed in [34,36] apply

a singular-value decomposition (SVD) to this approximate

eigenspace and solve a linear eigenproblem of small dimen-

sion. The approach presented in [37] applies the Rayleigh-Ritz

method to the approximate eigenspace and solves a nonlinear

eigenproblem of small dimension. The common property of

these methods is that they essentially require the solution of

scattering problems for the integration points on the chosen

contour. This is in contrast to standard approaches for solving

nonlinear eigenproblems, such as the Arnoldi method, which

are based on linearization of the nonprojected problems using

auxiliary fields [38,39].

For the modal expansion of scattering problems, an un-

conjugated scalar product can be used [29]. In this context,

it is an open problem how to deal with the expansion of

nonholomorphic quantities, e.g., the extinction cross section.

The contour-integral-based RPE [28] allows one to perform a

modal expansion without a scalar product. A solution E(r, ω0)

to the coupled system given by Eqs. (1) and (2) can be

expanded into a weighted sum of eigenmodes yielding the

coupling of the modes to specific sources J(r, ω0) with ω0 ∈
R. Cauchy’s integral formula,

E(r, ω0) =
1

2π i

∮

C0

E(r, ω)

ω − ω0

dω,

is exploited, where E(r, ω), ω ∈ C, is the analytical continu-

ation of E(r, ω0) into the complex plane and C0 is a closed

integration path around ω0 so that E(r, ω) is holomorphic

inside of C0. Deforming the integration path and applying

Cauchy’s residue theorem yield

E(r, ω0) = −
1

2π i

∮

C̃1

E(r, ω)

ω − ω0

dω − . . . −
1

2π i

∮

C̃K

E(r, ω)

ω − ω0

dω

+
1

2π i

∮

Cnr

E(r, ω)

ω − ω0

dω,

where C̃1, . . . , C̃K are contours around the eigenfrequencies

ω̃1, . . . , ω̃K and Cnr is a contour including ω0, the eigenfre-

quencies ω̃1, . . . , ω̃K , and no additional eigenfrequencies. The

Riesz projections,

Ẽk (r, ω0) = −
1

2π i

∮

C̃k

E(r, ω)

ω − ω0

dω,

corresponding to ω̃k describe the coupling of the eigenmodes

to the considered source field. The field,

Enr(r, ω0) =
1

2π i

∮

Cnr

E(r, ω)

ω − ω0

dω,

contains nonresonant components as well as components cor-

responding to eigenfrequencies outside of the contour Cnr. For

this modal expansion approach, instead of projecting random
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vectors as for BEYN’S ALGORITHM, the numerical integration

is performed by solving the coupled system using physical

source fields at the integration points.

Equations (1) and (2) are spatially discretized with the

finite element method (FEM) [40,41]. The FEM solver JCM-

SUITE is used to solve scattering problems. Perfectly matched

layers (PMLs) are applied to realize outgoing radiation condi-

tions [42]. High order polynomial ansatz functions and mesh

refinements are used to reach a sufficient numerical accuracy

[43]. We write

T (ω)v = f (ω),

for the coupled system given by Eqs. (1) and (2), where

T (ω) ∈ C
n×n is the system matrix resulting from the FEM

discretization and v ∈ C
n is the vector corresponding to

E(r, ω) and Jhd(r, ω). The dimension n results from the

spatial mesh and from the degrees of the polynomial ansatz

functions of the FEM discretization. The right-hand side

f (ω) corresponds to the impressed current density J(r, ω)

and incoming source fields. In this notation, T (ω̃k )ṽk = 0

holds for an eigenfrequency ω̃k and an eigenmode ṽk . Solv-

ing T (ω)v = f (ω) with f (ω) �= 0 corresponds to solving a

scattering problem.

B. Modal expansion of sesquilinear quantities

Typical physical quantities are quadratic forms associated

with a sesquilinear map q(v, v∗) for solution fields v and their

complex conjugates v
∗. Examples include the electromag-

netic absorption and the electromagnetic energy flux. For two

reasons, the construction of a meaningful modal expansion

of sesquilinear forms q(v, v∗) is not straightforward. First,

the missing orthogonality q(ṽk, ṽ
∗
l ) �= 0 yields cross terms

in the expansion. Secondly, the conjugation v
∗(ω0) renders

q(v(ω0), v∗(ω0)) nonholomorphic and the evaluation of this

expression for complex eigenfrequencies ω̃k is problematic.

To derive a modal expansion of sesquilinear quantities with

well-defined expansion coefficients, we extend the framework

of the RPE. The method is based on an analytical continuation

of the sesquilinear form q(v(ω0), v∗(ω0)) from the real axis

ω0 ∈ R into the complex plane ω ∈ C. We remark that v
∗(ω0)

is the solution to T ∗(ω0)v∗(ω0) = f ∗(ω0). The system matrix

T ∗(ω0) and the right-hand side f ∗(ω0) have analytical contin-

uations, which we denote by T ◦(ω) and f ◦(ω). Consequently,

the analytical continuation of v
∗(ω0) reads as

v
◦(ω) = T ◦(ω)−1 f ◦(ω). (3)

Finally, this gives the analytical continuation q(v(ω), v◦(ω))

into the complex plane and the modal expansion can be

computed.

Note that if a solution of the coupled system given by

Eqs. (1) and (2) has a pole in ω = ω̃k , then its complex

conjugate has a pole in ω = ω̃∗
k . Thus, q(v(ω), v◦(ω)) has

poles in ω̃k and also in ω̃∗
k . This has to be taken into account for

the RPE. The calculation of a modal quantity corresponding to

a specific ω̃k involves the summation of the Riesz projections

for ω̃k and ω̃∗
k .

As the derivation of v
◦(ω) is given formally, we remark, for

a better physical understanding, that the complex conjugation

of the system matrix and the right-hand side corresponds to

solving the coupled system for ω = −ω0 with sign-inverted

radiation conditions.

III. RESONANCES OF A NANOWIRE

We consider a specific setup, a cylindrical metal nanowire

which has also been investigated in the literature, to study

HDM-based effects theoretically [17]. For typical nanoplas-

monic applications, a quantity of interest is the extinction

cross section. In the following, we first compute eigenfrequen-

cies and eigenmodes of the nanowire. Based on this, we then

investigate the extinction cross section in a modal sense, i.e.,

it is shown which of the eigenmodes scatter and absorb an

incoming source field and which of the modes do not interact

with the light source. When the nonlocal HDM is replaced by

a local Drude model, only a single resonance is observed in

the extinction cross section [17,22,31].

The investigated sodium nanowire of radius R = 2 nm, in-

finitely extended in the z direction [see Fig. 1(a)], is described

by ε∞ = 1, ωp = 8.65 × 1015 s−1, γ = 0.01 ωp, and εloc =
ε0ε∞. The Fermi velocity is given by vF = 1.07 × 106 ms−1.

The nanowire is surrounded by free space with refractive

index equal to one. The source field is a y polarized plane wave

with unit amplitude propagating in the x direction. For the

FEM discretization, a mesh containing about 2000 triangles

with edge lengths from about 0.05 to 1 nm is applied. The

polynomial degree of the finite elements is set to p = 3.

The frequency range 0.4 ωp < ω0 < 1.4 ωp is selected for

the modal analysis. To compute eigenmodes ṽk using BEYN’S

ALGORITHM, an integration contour around this range is de-

fined. The parameters for the algorithm are N = 160 inte-

gration points, l = 200 random vectors, and, for the rank

drop detection within the SVD, a tolerance of tolrank =
10−8 is chosen. The SVD and the solution of the resulting

small linear eigenproblem are performed within MATLAB. We

obtain 118 eigenfrequencies inside the integration contour.

The imaginary parts of these eigenfrequencies are Im(ω̃k ) =
−0.0050 ωp, except for ω̃1 = (0.7313 − 0.0054i)ωp. We note

that the eigenmodes corresponding to eigenfrequencies with

Im(ω̃k ) = −0.0050 ωp are localized in the nanowire material,

which is modeled with a constant damping γ . Other loss

channels are not significant for these modes. This results in

the very similar imaginary parts of the eigenfrequencies. To

numerically assess the quality of the approximations of the

eigenfrequencies and eigenmodes, we compute the residu-

als res(ω̃k ) = ||T (ω̃k )ṽk||2/||T (ω̃k )||F , where ||ṽk||2 = 1. The

residuals for eigenfrequencies within the integration contour

are smaller than 6 × 10−15. The residuals for computed eigen-

frequencies outside the integration contour increase with the

distance to the contour. The integration points, all computed

eigenfrequencies, and the residuals are shown in Fig. 2(a).

Plots of the electric field intensity of an exemplary selection of

eigenmodes corresponding to eigenfrequencies in frequency

ranges below and beyond the plasma frequency are shown

in Figs. 2(b) and 2(c), respectively. Note that these eigen-

frequencies are semisimple with an algebraic and geometric

multiplicity of two. The chosen indicies of the eigenfrequen-

cies and eigenmodes are increasing with increasing real parts

of the eigenfrequencies and are intended to guide the reader

through the figures.
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(a)

(b)

(c)

FIG. 2. Eigenfrequencies ω̃k and eigenmodes ṽk of the

nanowire. (a) Eigenfrequencies, integration points, and residuals

res(ω̃k ) = ||T (ω̃k )ṽk ||2/||T (ω̃k )||F , where ||ṽk ||2 = 1. Inside of

the integration contour, 118 eigenfrequencies are located (including

multiplicities). (b) Plots (a.u.) of the electric field intensity

of an exemplary selection of eigenmodes corresponding to

eigenfrequencies below the plasma frequency, ω̃1 = (0.7313 −
0.0054i)ωp, ω̃2=(0.7585−0.0050i)ωp, ω̃3=(0.7857−0.0050i)ωp,

ω̃4=(0.8138 − 0.0050i)ωp, ω̃5 = (0.8429 − 0.0050i)ωp, and

ω̃6 = (0.8729 − 0.0050i)ωp. (c) As above, for eigenfrequencies

beyond the plasma frequency, ω̃7 = (1.1341 − 0.0050i)ωp,

ω̃8=(1.1373−0.0050i)ωp, ω̃9=(1.1434−0.0050i)ωp, ω̃10=(1.1453

− 0.0050i)ωp, ω̃11 = (1.1651 − 0.0050i)ωp, and ω̃12 =
(1.1654 − 0.0050i)ωp. Color scale from zero (black) to one

(white).

(a) (b)

(c)

(d)

FIG. 3. Modal analysis of the extinction cross section σ (ω0)

of the nanowire. (a) σ (ω0) for the frequency range 1.12 ωp <

ω0 < 1.17 ωp. Modal extinction cross section σ̃10(ω0) correspond-

ing to the eigenfrequency ω̃10 = (1.1453 − 0.0050i)ωp and the

sum
∑12

k=7,k �=10 σ̃k (ω0) corresponding to the remaining eigenfre-

quencies in the frequency range. Total extinction cross sec-

tion σtot (ω0) for comparison. (b) Classification parameter nϕ (ω̃k )

for the eigenfrequencies ω̃k in the frequency range 0.4 ωp <

Re(ω̃k ) < 1.4 ωp. (c) Plots (a.u.) of the electric field inten-

sities of the eigenmodes with nϕ (ω̃k ) = 2. Color scale from

zero (black) to one (white). (d) Modal expansion of the ex-

tinction cross section
∑

M σ̃k (ω0), M = {k | nϕ (ω̃k ) = 2}, corre-

sponding to the six eigenfrequencies ω̃1 = (0.7313 − 0.0054i)ωp,

ω̃13 = (1.0301 − 0.0050i)ωp, ω̃14 = (1.0788 − 0.0050i)ωp, ω̃10 =
(1.1453 − 0.0050i)ωp, ω̃15 = (1.2267 − 0.0050i)ωp, and ω̃16 =
(1.3202 − 0.0050i)ωp. The total extinction cross section σtot (ω0) is

plotted as a reference solution.
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Based on the computed spectrum, we investigate the ex-

tinction cross section,

σ (ω0) =
1

Ppw

[∫

δ�

1

2
Re(E∗(r, ω0) × H(r, ω0))dS

+
∫

�nw

1

2
Re(E∗(r, ω0) · Jhd(r, ω0))dV

]

,

where the first term is the power flux across the boundary

of the entire computational domain, denoted by δ�, and the

second term is the energy loss in the domain where the

nanowire exists, denoted by �nw [31]. The incoming plane

wave with real frequencies ω0 is normalized so that the power

flux through the geometrical cross section of the nanowire

is Ppw = 4 × 10−9 W. To quantify the coupling of the light

source to specific eigenmodes, the RPE is applied. This re-

quires the holomporphic evaluation of sesquilinear quantities

from Eq. (3) and yields the modal extinction cross section

σ̃k (ω0) corresponding to an eigenfrequency ω̃k . The direct

solution of the coupled system given by Eqs. (1) and (2) yields

the total extinction cross section σtot(ω0).

First, we investigate the modal extinction cross section in

a small frequency range including ω̃7, . . . , ω̃12. Figure 3(a)

shows σ̃7(ω0), . . . , σ̃12(ω0), and σtot(ω0). The eigenmode ṽ10

has a significant contribution to σtot(ω0). The contributions of

the eigenmodes ṽ7, ṽ8, ṽ9, ṽ11, and ṽ12 are negligible.

Secondly, in order to understand why a specific eigenmode

couples to the incoming plane wave, a fast Fourier transform

of the electric field intensities of the eigenmodes on a circle

inside the nanowire is performed. This yields the number of

intensity maxima of the eigenmodes along the boundary of

the nanowire, which we denote by nϕ (ω̃k ). In this way, it is

possible to classify the eigenmodes. Figure 3(b) shows nϕ (ω̃k )

for the frequency range 0.4 ωp < Re(ω̃k ) < 1.4 ωp. The field

intensities of the six eigenmodes with nϕ (ω̃k ) = 2 are plotted

in Fig. 3(c). It can be seen that these modes are dipolelike.

Due to the relation of the radius of the nanowire and the

wavelength of the plane wave, R 	 λ0, the overlap integral of

source field and eigenmode field has a significant contribution

only for these modes.

Finally, the modal extinction cross sections σ̃k (ω0)

for the eigenfrequencies with nϕ (ω̃k ) = 2 are computed.

Figure 3(d) shows the sum of the modal extinction cross sec-

tions
∑

M σ̃k (ω0), M = {k | nϕ (ω̃k ) = 2}. For the investigated

scattering of a plane wave, the agreement of the expansion

with the total extinction cross section σtot(ω0) demonstrates

that the complex scattering behavior of the HDM-based

nanowire is governed by a few eigenmodes only. Note that

the total extinction cross section is in agreement with results

from the literature [17,31].

For illumination with different types of source fields, e.g.,

dipole sources, also the remaining eigenmodes of the rich

spectrum can be excited.

IV. CONCLUSIONS

We investigated the light-matter interaction in nanoplas-

monic systems described by the HDM. We presented a

contour-integral-based framework for modal analysis, which

enables the direct computation of the spectrum of nonlocal

material systems. We introduced an approach for the modal

expansion of sesquilinear quantities. This opens the possibil-

ity to investigate typical physical observables, e.g., the energy

flux, the energy absorption, and overlap integrals for extrac-

tion efficiencies. Due to the generality of this approach, we

expect that it will prove useful also in other fields of physics.

Resonant states and the modal extinction cross section of

a metal nanowire were calculated. While the spectrum of

this system consists of many eigenfrequencies, only a few

resonant states have a significant contribution to the extinction

cross section. These resonant states were identified and used

to expand the quantity of interest.

As demonstrated, nanoplasmonic systems on small length

scales exhibit a large number of additional resonant states

described by the HDM. A typical feature of these states is their

high local field energy concentration. With precisely defined

source fields, specific states can be excited. We expect that

this will allow for additional degrees of freedom in tailoring

light-matter interactions. A modal picture is a prerequisite

for the understanding and for the design of corresponding

nanoplasmonic devices.
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4 Resonances and optical far-field

quantities

Nanophotonic observables are usually measured in the far field of the corresponding
devices. The resonance expansion of optical far-field quantities is not straightforward
because, due to the open material systems, the eigenmodes diverge with increasing dis-
tance from the underlying nanoresonators [15, 47].
In Ref. [66], we introduce an approach for the resonance expansion of far-field quan-

tities. The approach is based on Riesz projections and builds on the results presented
in the previous chapters. We investigate the energy flux density [92] in the far field of a
nanophotonic device,

s(E(r, ω0),E
∗(r, ω0)) =

1

2
Re

(

E∗(r, ω0)×
1

iω0µ0

∇×E(r, ω0)

)

· n,

where n is the normal on the corresponding far-field sphere. The energy flux density,
which is a quadratic quantity with a sesquilinear map, is nonholomorphic due to the
complex conjugation of the electric field. This implies that the analytical continuation of
s(E(r, ω0),E

∗(r, ω0)) into the complex frequency plane, which is required for the contour
integration within the Riesz projection expansion given by Eq. (2.4), is problematic. To
overcome this issue, we use the relation E∗(r, ω0) = E(r,−ω0) and introduce the field
E◦(r, ω), where ω ∈ C, as the analytical continuation of E(r,−ω0) into the complex
frequency plane. This yields the Riesz projection expansion of the energy flux density,

s(E(r, ω0),E
∗(r, ω0)) =−

M
∑

m=1

1

2πi

∮

Cm

s(E(r, ω),E◦(r, ω))

ω − ω0

dω

−

M
∑

m=1

1

2πi

∮

C∗

m

s(E(r, ω),E◦(r, ω))

ω − ω0

dω

+
1

2πi

∮

Cnr

s(E(r, ω),E◦(r, ω))

ω − ω0

dω,

(4.1)

where the contours Cm enclose the eigenfrequencies ω̃m, the complex conjugated con-
tours C∗

m enclose the complex conjugated eigenfrequencies ω̃∗

m, and Cnr corresponds to
the remainder of the expansion. The contour integrals for C∗

m take into account the
eigenfrequencies corresponding to the field E∗(r, ω0). The electric fields E(r, ω) and
E◦(r, ω) are computed by solving scattering problems given by Eq. (2.1). Equation (4.1)
can be used to perform a resonance expansion of the energy flux density in the far field,
since the calculation of the product involving E(r, ω) and E◦(r, ω) leads to nondiverging
expansion terms.
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We apply the Riesz projection expansion given by Eq. (4.1) to an example from the
literature, the electromagnetic field emitted by a quantum dot acting as single-photon
source [93]. The expansion of the energy flux density s(E(r, ω0),E

∗(r, ω0)) in the far
field of the nanophotonic device is computed. This provides information about how
the eigenmodes radiate in different directions. We also compute the expansion of the
photon collection efficiency [93], which is directly related to the energy flux density.
Furthermore, we compute the Riesz projection expansion of the Purcell factor given by
Eq. (2.5). This provides information on how the individual eigenmodes can enhance the
emission of the single-photon source.
In the following, Ref. [66] is reprinted with permission from [Felix Binkowski, Fridtjof

Betz, Rémi Colom, Martin Hammerschmidt, Lin Zschiedrich, and Sven Burger. Quasi-
normal mode expansion of optical far-field quantities. Phys. Rev. B 102, 035432 (2020).
doi: 10.1103/PhysRevB.102.035432.] Copyright 2020 by the American Physical Society.
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Quasinormal mode (QNM) expansion is a popular tool to analyze light-matter interaction in nanoresonators.
However, expanding far-field quantities such as the energy flux is an open problem because QNMs diverge
with an increasing distance to the resonant systems. We introduce a theory to compute modal expansions of
far-field quantities rigorously. The presented approach is based on the complex eigenfrequencies of QNMs. The
divergence problem is circumvented by using contour integration with an analytical continuation of the far-field
quantity into the complex frequency plane. We demonstrate the approach by computing the angular resolved
modal energy flux in the far field of a nanophotonic device.

DOI: 10.1103/PhysRevB.102.035432

I. INTRODUCTION

Modern nanotechnology allows for exploring new regimes
in tailoring light-matter interaction [1]. Applications comprise
the design of nanoantennas for quantum information tech-
nology [2], tuning photochemistry applications with nanores-
onators [3], using plasmonic nanoparticles for biosensing [4],
and miniaturization of optical components using dielectric
metasurfaces [5]. Most approaches are based on resonance
phenomena. Optical resonances are characterized by their
wavelength-dependent localized and radiated field energies.
They may appear as, e.g., plasmonic resonances in metals [6]
or resonances in dielectric materials, such as Mie resonances
[7] or bound states in the continuum [8]. The theoretical
description of the resonances is essential for understanding
the physical properties of the systems and for designing
and optimizing related devices. A popular approach is the
modeling with QNMs, which are the eigensolutions of reso-
nant systems [9,10]. In typical nanophotonic setups, outgoing
radiation conditions have to be fulfilled yielding complex
eigenfrequencies and an exponential decay of the QNMs in
time. This means that the QNMs diverge exponentially with
an increasing distance to the resonators [9–12]. Due to the
conceptual difficulties of exponential growth, this behavior
has been termed “exponential catastrophe” [12]. Nevertheless,
QNM-based expansion approaches, where electromagnetic
fields are expanded into weighted sums of QNMs, have been
derived to describe light-matter interaction in various applica-
tions [13–18]. These approaches are based on the expansion
of electromagnetic fields inside and in the close vicinity of
the resonators. In this way, modal near-field quantities, such
as the modal Purcell enhancement [19–21], can be computed.
For time-dependent problems, methods have been proposed to
overcome the divergence problem [22–24].

In many applications, time-averaged far-field quantities
are of special interest [1,2,5]. However, the divergence of
QNMs is a key issue for modal expansion of such quanti-
ties [9,10]. From a physics perspective, for time-harmonic
sources, the excited electromagnetic near- and far-field dis-

tributions are clearly nondiverging. This has motivated a
discussion about the general applicability of QNMs [25].
Alternative approaches based on model approximations which
yield eigenmodes with real-valued frequencies in the far-field
regions have been proposed [25–27]. Further methods use
the Dyson equation approach [28,29] or near-field to far-field
transformations [30] of the QNMs resulting in approxima-
tions of the computed far-field quantities [18,31]. Also, the
intensively discussed question of how to normalize QNMs is
related to their exponential divergence [9,10,32–35].

In this work, we present a general approach for modal
analysis which allows for expansions of physical observables
in the far-field region. The approach is based on the com-
plex eigenfrequencies of the resonant systems; however, the
diverging behavior of the corresponding QNMs is circum-
vented by using contour integration of the relevant far-field
quantities. Therefore, the presented approach paves the way
for avoiding an exponential catastrophe while retaining the
rigorous model. No approximation regarding the modeling
of the naturally complex-valued frequencies of a resonant
system is required. The method is validated by comparing
the modal expansion to a direct solution of the corresponding
scattering problem. The approach is applied to compute the
modal expansion of the angular resolved energy flux density
radiated to the far field by a localized source in a resonant
nanostructure.

II. MODAL EXPANSION OF FAR-FIELD QUANTITIES

The QNMs of a resonant system are diverging outgoing
waves. Figure 1(a) illustrates the electric field corresponding
to a QNM in a one-dimensional resonator defined by layers
with different refractive indices. In nano-optics, in the steady-
state regime, electric fields E(ω0) ∈ C

3 are solutions to the
time-harmonic Maxwell’s equations in second-order form,

∇ × μ(ω0)−1∇ × E(ω0) − ω2
0ε(ω0)E(ω0) = iω0J, (1)

where ω0 ∈ R is the angular frequency and J ∈ C
3 is the

source field. For a simpler notation, we omit the spatial
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FIG. 1. One-dimensional resonator defined by layers with differ-
ent refractive indices, where n2 > n1. Electric field solutions, E(x, ω)
and E◦(x, ω), are obtained by solving the Helmholtz equation with
a source term corresponding to incoming plane waves with unit
amplitude. Only scattered fields (a.u.) outside the resonator are
shown. (a) Diverging field E(x, ω̃k,�) = A ei(n1ω̃k,�/c)|x|, where ω̃k is a
resonance pole of E(x, ω) and ω̃k,� = ω̃k + �ω̃k is a frequency close
to ω̃k . (b) Illustration of resonance poles and integration contours
corresponding to the RPE for the energy flux density given by
Eq. (2). The analytical continuation of the energy flux density has
resonance poles with negative and with positive imaginary parts.
(c) Nondiverging field E◦(x, ω̃k,�) = B e−i(n1ω̃k,�/c)|x|. (d) Constant
product E(x, ω̃k,�) · E◦(x, ω̃k,�), which relates to the energy flux
density.

dependence of the quantities and write, e.g., E(ω0) instead of
E(r, ω0), where r ∈ R

3 is the position. The permittivity tensor
and the permeability tensor are defined by ε(ω0) and μ(ω0),
respectively. For optical frequencies, μ(ω0) is typically equal

to the vacuum permeability μ0. QNMs are solutions to Eq. (1)
equipped with outgoing radiation conditions and without
a source, i.e., J = 0. The eigenfrequencies ω̃k ∈ C have
negative imaginary parts and are given by the complex reso-
nance poles of the analytical continuation E(ω) of the electric
field E(ω0) into the complex plane ω ∈ C.

We use the Riesz projection expansion (RPE) [17,36] for
modal expansion of the energy flux density in the far field,
which can be expressed as a quadratic form with a sesquilinear
map. The energy flux density [37] is defined by

s(E(ω0), E∗(ω0)) =
1

2
Re

(

E∗(ω0) ×
1

iω0μ0
∇ × E(ω0)

)

· n,

where E∗(ω0) is the complex conjugate of the electric field
and n is the normal on the corresponding far-field sphere.
The RPE is based on contour integration in the complex
frequency plane. Since the complex conjugation of the electric
field makes s(E(ω0), E∗(ω0)) nonholomorphic, the evalua-
tion of this function for complex frequencies is problematic.
This challenge can be addressed by exploiting the relation
E∗(ω0) = E(−ω0) for ω0 ∈ R. The field E(−ω0) is a solu-
tion to Eq. (1) as well. For the harmonic time dependency
e−iω0t with a negative frequency, the radiation conditions are
sign inverted. The field E(−ω0) has an analytical continu-
ation into the complex plane ω ∈ C, which we denote by
E◦(ω). This yields the required analytical continuation of
s(E(ω0), E∗(ω0)), which is given by s(E(ω), E◦(ω)). Note
that E◦(ω) introduces resonance poles in the upper complex
half-plane, which are usually not considered in the literature.
These poles are an essential part of the presented approach.
To expand s(E(ω0), E∗(ω0)) = s(E(ω0), E◦(ω0)) into modal
contributions, Cauchy’s integral formula,

s(E(ω0), E◦(ω0)) =
1

2π i

∮

C0

s(E(ω), E◦(ω))

ω − ω0
dω,

is then exploited. The contour C0 is a closed integration path
around ω0 so that s(E(ω), E◦(ω)) is holomorphic inside of C0.
Deforming the integration path and applying Cauchy’s residue
theorem yield

s(E(ω0), E◦(ω0)) = −

K
∑

k=1

1

2π i

∮

C̃k

s(E(ω), E◦(ω))

ω − ω0
dω

−

K
∑

k=1

1

2π i

∮

C̃∗
k

s(E(ω), E◦(ω))

ω − ω0
dω

+
1

2π i

∮

Cr

s(E(ω), E◦(ω))

ω − ω0
dω, (2)

where C̃1, . . . , C̃K are contours around the resonance poles
of E(ω), given by ω̃1, . . . , ω̃K , and C̃∗

1 , . . . , C̃∗
K are contours

around the resonance poles of E◦(ω), given by ω̃∗
1, . . . , ω̃

∗
K .

The outer contour Cr includes ω0, the resonance poles
ω̃1, . . . , ω̃K and ω̃∗

1, . . . , ω̃
∗
K , and no further poles, as sketched

in Fig. 1(b). The Riesz projections

s̃k (E(ω0), E◦(ω0)) = −
1

2π i

∮

C̃k

s(E(ω), E◦(ω))

ω − ω0
dω

−
1

2π i

∮

C̃∗
k

s(E(ω), E◦(ω))

ω − ω0
dω
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TABLE I. Eigenfrequencies of the resonator shown in Fig. 2(a).
The eigenfrequencies ω̃k are contained in the circular contour Cr ,
which is centered at 1.41 × 1015 s−1 and has a radius of 6.8 ×

1013 s−1.

k Re(ω̃k ) (1015 s−1) Im(ω̃k ) (1013 s−1)

1 1.441 −0.109
2 1.428 −0.182
3 1.399 −0.232
4 1.372 −0.568
5 1.370 −1.025
6 1.398 −2.475
7 1.406 −0.470
8 1.422 −0.875
9 1.435 −1.942

are modal contributions for the energy flux density. The
Riesz projections s̃k (E(ω0), E◦(ω0)) are associated with the
eigenfrequencies ω̃k as the integration is performed along the
contours C̃k and C̃∗

k . The contribution

sr(E(ω0), E◦(ω0)) =
1

2π i

∮

Cr

s(E(ω), E◦(ω))

ω − ω0
dω

is the remainder of the expansion containing nonresonant
components as well as components corresponding to eigen-
frequencies outside of the contour Cr.

The RPE is based on evaluating s(E(ω), E◦(ω)) by solving
Eq. (1) for the frequencies ω and −ω. Consequently, the
quadratic form s(E(ω), E◦(ω)), where a product of E(ω)
and E◦(ω) is involved, does not diverge. This is due to the
cancellation of the factors ei(nω/c)r and e−i(nω/c)r of the fields
in the far-field region, where r = ||r||. In this way, it becomes
possible to compute modal expansions of far-field quantities
with nondiverging expansion terms. To illustrate this, we con-
sider a one-dimensional resonator and compute electric fields,
E(x, ω) and E◦(x, ω), fulfilling the corresponding Helmholtz
equation. Figures 1(a) and 1(c) sketch the diverging field
E(x, ω̃k,�) and the nondiverging field E◦(x, ω̃k,�) outside
of the resonator, respectively. The frequency ω̃k,� = ω̃k +

�ω̃k represents an evaluation point on an integration contour
C̃k . Figure 1(d) shows the nondiverging product E(x, ω̃k,�) ·

E◦(x, ω̃k,�), which relates to the energy flux density. The ap-
proach also applies to arbitrary three-dimensional problems,
where, in the far-field region, E(r, ω) ∼ ei(nω/c)r (1/r) and
E◦(r, ω) ∼ e−i(nω/c)r (1/r).

III. APPLICATION

The presented approach is used for modal analysis of a
quantum technology device. We revisit an example from the
literature [38], where a quantum dot acts as a single-photon
source. For a specific far-field region, the photon collection
efficiency (PCE) has been enhanced by using a numerically
optimized circular Bragg grating nanoresonator. Such devices
can be realized experimentally by using deterministic fabrica-
tion technologies [39]. For more details on the specific device
and material properties, the reader is referred to [38]. The
geometry is sketched in Fig. 2(a). To numerically analyze the

(c)

air

far field

Au

SiO2

GaAs

(a)

n

(b)

FIG. 2. Circular Bragg grating resonator with localized light
source. (a) Geometry with an illustration of the electric field intensity
(a.u.) of the QNM corresponding to the eigenfrequency ω̃2; see
Table I. The gallium arsenide (GaAs) grating has a thickness of
240 nm and consists of an inner disk with a radius of 550 nm and
10 rings with a width of 340 nm and a periodicity of 500 nm. The
grating is placed on a silicon dioxide (SiO2) layer with a thickness
of 240 nm, which is coated from below with a gold (Au) layer of
300 nm thickness. The light source is modeled by a dipole emitter
placed at the center of the inner disk. The dipole radiates at the
frequency ω0 and is oriented in x direction. (b) Radiation diagram at
ω0 = 2πc/(1360 nm) for the total modal expansion stot(θ ) computed
by Eq. (2) and for the quasiexact solution of the energy flux density
s(θ ). The quantities are evaluated at r = 1 m and ϕ = 90◦, which
corresponds to the yz plane. (c) Modal decomposition of the radiation
diagram for the contributions s̃2(θ ), s̃3(θ ), and s̃4(θ ).

light source, we spatially discretize the system with the finite
element method (FEM) using the solver JCMSUITE [40].

The quantity of interest is the energy flux density in the
far field s(ω0, θ ) = s(E(ω0, θ ), E◦(ω0, θ )), see Eq. (2), where
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θ is the inclination angle as shown in Fig. 2(a). For the
modal expansion of s(ω0, θ ), the outer contour Cr is chosen
to enclose the wavelength range of interest, 1280 nm �

λ0 � 1400 nm, where λ0 = 2πc/ω0. We compute all
eigenfrequencies inside of the contour, which are listed in
Table I. Note that only those rotationally symmetric QNMs
which can couple to the dipole source are computed. Fig-
ure 2(a) sketches the electric field intensity of the QNM
corresponding to ω̃2 in the near field of the structure. The
QNM exhibits a maximum of the field intensity at the center
of the resonator and it diverges in the far-field region.

For a fixed dipole frequency, the radiation diagrams for
the total modal expansion stot(ω0, θ ) =

∑9
k=1 s̃k (ω0, θ ) +

sr(ω0, θ ) and for the quasiexact solution s(ω0, θ ) are depicted
in Fig. 2(b). The quasiexact solution is computed by solving
scattering problems given by Eq. (1) directly. The total modal
expansion coincides with the quasiexact solution with an ab-
solute error of s(θ )/smax < 5 × 10−3 and, for the angle region
−60◦ < θ < 60◦, with a relative error smaller than 3 × 10−5.
The differences in these solutions are related to numerical
discretization errors and would decrease further by refining
the numerical parameters. The agreement demonstrates that,
although the associated QNMs diverge in the far field, the RPE
of the energy flux density gives correct results with nondi-
verging expansion terms. Figure 2(c) shows the modal energy
flux densities s̃2(ω0, θ ), s̃3(ω0, θ ), and s̃4(ω0, θ ). These are the
significant contributions for the total energy flux density and
they have different directivities corresponding to the different
diffraction intensities of the Bragg grating. The contributions
s̃3(ω0, θ ) and s̃4(ω0, θ ) also have negative values. A negative
modal energy flux density can be understood as suppression
of light emission into specific directions arising from the
interference of various modes excited by the source at the fre-
quency ω0. Negative modal contributions have been reported
also for QNM expansions of near-field quantities [19]. Note
that, as physically expected, the total modal expansion of the
energy flux density, stot(ω0, θ ), is positive for all angles θ .

Next, the RPE is used to obtain insight into the properties
of the device for the wavelength range 1280 nm � λ0 �

1400 nm. Figure 3(a) shows the normalized decay rate, also
termed Purcell enhancement,

	(ω0) = −
1

2
Re(E(ω0) · j∗)/	b,

where j = −iωp with the dipole moment p and 	b is the
dipole emission in homogeneous background material [17].
It can be observed that, in the wavelength range of interest,
the three resonances corresponding to the eigenfrequencies
ω̃2, ω̃3, and ω̃4 are significant for the Purcell enhancement.
The resonance with the eigenfrequency ω̃1 has a very small
influence. The nonresonant contributions and the contribu-
tions associated with other eigenfrequencies are negligible.
Figure 3(b) shows the PCE,

η(ω0) =
1

PDE

∫

δ�

1

2
Re

(

E∗(ω0) ×
1

iω0μ0
∇ × E(ω0)

)

· dS,

where δ� is the far-field region corresponding to NA = 0.8
and PDE is the emitted power of the dipole emitter into the
upper hemisphere. In the case of the PCE, the resonances
corresponding to ω̃1, ω̃2, ω̃3, and ω̃4 play an important role. In

FIG. 3. Modal expansions of Purcell enhancement and PCE
for the resonator with a localized light source shown in
Fig. 2(a). Eigenfrequencies ω̃1, . . . , ω̃9 are considered; see Table I.
(a) Modal expansion of the Purcell enhancement. The contributions
	̃1(λ0), . . . , 	̃4(λ0) correspond to the eigenfrequencies ω̃1, . . . , ω̃4,
respectively. The remaining modal contributions are added to the
remainder of the expansion

∑9
k=5 	̃k (λ0) + 	r (λ0). The term 	r (λ0)

includes also modal contributions corresponding to eigenfrequen-
cies outside the integration contour Cr . (b) Modal expansion of
the PCE. Total modal expansion, ηtot (λ0) =

∑9
k=1 η̃k (λ0) + ηr (λ0),

single modal contributions, η̃1(λ0), . . . , η̃4(λ0), and the sum of other
contributions,

∑9
k=5 η̃k (λ0) + ηr (λ0).

contrast to the Purcell enhancement, the modal contribution
η̃1(ω0) is significant for the PCE. It contributes to ηtot(ω0)
for the wavelength region near to its maximum. Note that
the behavior of the remaining contributions,

∑9
k=5 η̃k (λ0) +

ηr(λ0), is partially based on resonances with eigenfrequencies
outside the integration contour Cr.

IV. CONCLUSIONS

A theoretical approach to investigate modal quantities in
the far field of resonant systems was presented. Although
the QNMs decay exponentially in time and thus represent
diverging outgoing waves, modal expansions can be computed
rigorously. The approach was applied to expand the energy
flux density in the far field of a nanoresonator with an em-
bedded point source. It was demonstrated that, by computing
modal far-field patterns, those resonances which contribute
significantly to the scattering response of the nanophotonic
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device can be identified. Thus deeper physical insights into
the system are gained.

The method cannot only be used to efficiently compute
the scattering response and to compare to experimental re-
sults, but also for an optimization of devices for a tailored
functionality. It can be applied to far-field as well as to
near-field quantities. Examples are quantities involving the
electromagnetic energy flux density or the electromagnetic
absorption. However, the investigations in this work are lim-
ited to quadratic forms with a sesquilinear map. We expect
that, with resolving the key issue of the far-field treatment
in QNM modeling, the presented approach will enable usage
of QNMs in various fields. Applications include systems in
nano-optics with any material dispersion and any resonant
system in general, e.g., in acoustics or quantum mechanics.
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5 Computing physically relevant

eigenmodes and eigenfrequencies

With the expansion of the electric field E(r, ω0) into a sum of Riesz projections Em(r, ω0),
given by Eq. (2.4), the Riesz projections have a physical meaning in terms of the electric
field caused by a light source. Furthermore, a simple connection between Riesz pro-
jections and eigenmodes is given by Em(r, ω0) = αm(ω0)Ẽm(r), where Em(r, ω0) are
the Riesz projections from Eq. (2.4), Ẽm(r) are normalized eigenmodes from Eq. (2.3),
and αm(ω0) are expansion coefficients calculated with a certain formula [72] from the
resonance expansion given in Eq. (2.2).

In Ref. [67], based on these ideas from the previous chapters, we develop an approach to
compute physically relevant eigenfrequencies. Physically relevant refers to the resonance
expansion of the physical observable of interest, i.e., eigenfrequencies are relevant if
the corresponding expansion terms are significant for the resonance expansion of the
observable. We consider a physical observable L(E(r, ω0)), where L : C3 → C is linear
and ω0 ∈ R, and its analytical continuation L(E(r, ω)), where ω ∈ C, into the complex
frequency plane. Furthermore, a contour Cm enclosing the single eigenfrequency ω̃m,
which is a pole of order one, is considered. Then, the Laurent expansion of L(E(r, ω))
about ω̃m is given by

L(E(r, ω)) =
∞
∑

k=−1

ak(ω − ω̃m)k, ak =
1

2πi

∮

Cm

L(E(r, ω))

(ω − ω̃m)k+1
dω ∈ C.

Application of Cauchy’s integral formula yields

∮

Cm

ωL(E(r, ω)) dω =

∮

Cm

ω

ω − ω̃m

a−1 dω = ω̃m

∮

Cm

L(E(r, ω)) dω,

where the regular terms in the expansion vanish due to the closed contour integral.
Rearranging gives the formula for the eigenfrequency,

ω̃m =

∮

Cm

ωL(E(r, ω)) dω

∮

Cm

L(E(r, ω)) dω
, (5.1)

where the contour integrals are Riesz projections corresponding to L(E(r, ω)) and Cm.
This approach is generalized to multiple eigenfrequencies that lie within a contour, re-
sulting in a nonlinear system of equations that must be solved. Since the method is
based on Riesz projections corresponding to L(E(r, ω)) and Cm, the eigenfrequencies
relevant to the physical observable L(E(r, ω0)) are prioritized in the computation.
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We apply the Riesz-projection-based approach to a quantum mechanical problem
from the literature, which is a quadratic nonlinear eigenproblem resulting from the
Schrödinger equation [60, 94]. We further apply the approach to the two nanopho-
tonic systems already investigated in the Chapters 2 and 3, which are rational nonlinear
eigenproblems. It is possible to access mainly physical eigenfrequencies, although the in-
tegration contours also contain many non-physical eigenfrequencies resulting from, e.g.,
the truncation of the open systems [38].
In the following, Ref. [67] is reprinted with permission from [Felix Binkowski, Lin

Zschiedrich, and Sven Burger. A Riesz-projection-based method for nonlinear eigenvalue
problems. J. Comput. Phys. 419, 109678 (2020). doi: 10.1016/j.jcp.2020.109678.]
Copyright 2020 Elsevier Inc.
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We propose an algorithm for general nonlinear eigenvalue problems to compute physically 
relevant eigenvalues within a chosen contour. Eigenvalue information is explored by 
contour integration incorporating different weight functions. The gathered information 
is processed by solving a nonlinear system of equations of small dimension prioritizing 
eigenvalues with high physical impact. No auxiliary functions have to be introduced 
since linearization is not used. The numerical implementation is straightforward as the 
evaluation of the integrand can be regarded as a blackbox. We apply the method to a 
quantum mechanical problem and to two nanophotonic systems.
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1. Introduction

Nonlinear eigenvalue problems (NLEVPs) occur in many fields in physics, from the dynamic analysis of macroscopic 
structures [1] to the investigation of photonic resonators on the nanoscale [2], or scattering resonances in quantum me-

chanics [3]. The NLEVPs are solved numerically [4,5] in order to physically characterize the systems [6,7].

We address the most general problem class of NLEVPs

T (λ)v = 0, (1)

where T (λ) ∈ Cn×n is the eigenvector residual function, λ ∈ C is an eigenvalue, and v ∈ Cn is an eigenvector corresponding 
to λ. In physics, NLEVPs often have the form A(λ)v = λB(λ)v , which can be brought into the above form with T (λ) =
A(λ) − λB(λ). In many applications, T (λ) is a very large matrix, while just a few eigenpairs (λ, v) are responsible for the 
physical behavior of the described problem.

For rational residual functions T (λ), the NLEVPs can be cast into a linear form, so that standard approaches, such as 
the Arnoldi or the Jacobi-Davidson method, are applicable. Such a linearization introduces auxiliary functions and increases 
the dimension of the problem [5,8]. Material dispersion is often significant in physical systems and modeled by measured 
material data. To apply the approach of linearization, material data have to be fitted by rational functions [9] and numerical 
costs grow with the order and number of poles of the fit. Note that the Arnoldi and the Jacobi-Davidson method have been 
adapted to solve NLEVPs directly [10,11].
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In recent years, eigensolvers based on contour integration attracted attention as they inherently support solving 
NLEVPs [12–15]. Contour integral methods essentially involve solving linear systems of equations T (λ)−1 y with random 
vectors y along a chosen integration contour. The contour integration gives a projection onto the eigenspace corresponding 
to the eigenvalues inside the contour. In [14,15], the Rayleigh-Ritz method is then used to achieve approximations of eigen-
pairs. The nonlinear structure is still inherited to the lower dimensional projected system and needs to be given explicitly 
in a rational form. The methods of [12,13] extract eigenvalue and eigenvector information by applying a singular-value de-
composition to the subspace generated by the contour integration and then solving a linear eigenproblem. An alternative 
way of extracting this information is based on canonical polyadic tensor decomposition [16].

The methods proposed in [12–15] yield eigenpairs whose eigenvalues are located inside a specific region in the com-

plex plane. This region is typically chosen according to the underlying physical problem. However, due to the numerical 
discretization, insignificant eigenvalues may occur close to the physically relevant eigenvalues. A prominent example are 
eigenvalues resulting from the truncation of open resonant systems [8]. Due to the application of random vectors for the 
contour integral methods, in such cases, many eigenpairs have to be computed and they are not classified according to their 
physical relevance.

In this work, we present a contour integral method which only projects onto the physically relevant eigenspaces. This 
is done by the choice of the vector y corresponding to a physical source field which does not significantly couple to the 
undesired eigenvectors. These may arise due to the numerical discretization. The insignificant eigenvalues are then filtered 
out by a fit to a nonlinear model based on Cauchy’s residue theorem. Instead of computing individual eigenvectors, spectral 
projections are calculated. As linearization is circumvented in any stage of the procedure, any material dispersion relation 
can be included.

2. Riesz projection method for NLEVPs

This section derives an approach to compute eigenvalues λ fulfilling Eq. (1) which are located inside a chosen contour and 
to compute associated spectral projections, so-called Riesz projections. To start with, notation and theoretical background 
on elements of complex analysis are introduced [17, Section 4.4]. We consider Eq. (1) with a regular matrix function T :
� → Cn×n , where � ⊂ C. Let G : Cn → C be a meromorphic function and y ∈ Cn be a random vector. Let �k ⊂ � be 
a contour which encloses a single eigenvalue λk of the residual function T (λ) and on which the function G

(

T (λ)−1 y
)

is 
holomorphic. The eigenvalue λk is a pole of G

(

T (λ)−1 y
)

and the pole is assumed to be of order p. Then, the Laurent series 
for G

(

T (λ)−1 y
)

about λk is given by

G
(

T (λ)−1 y
)

=
∞
∑

n=−p

an(λ − λk)
n, an(λk) := 1

2π i

∮

�k

G
(

T (ξ)−1 y
)

(ξ − λk)
n+1

dξ ∈ C. (2)

The coefficient a−1(λk) is the so-called residue

Resλk

(

G
(

T (λ)−1 y
))

= 1

2π i

∮

�k

G
(

T (λ)−1 y
)

dλ (3)

of G
(

T (λ)−1 y
)

at λk .

2.1. Sketch of the approach

To show the idea of this work, a simple eigenvalue λk of T (λ) is assumed, i.e., λk is a pole of G
(

T (λ)−1 y
)

and has the 
order p = 1. With the aim of extracting eigenvalue information from Eq. (3), the scalar function f (λ) = λ is introduced. 
Then, Cauchy’s integral formula leads to

Resλk

(

λG
(

T (λ)−1 y
))

= 1

2π i

∮

�k

λG
(

T (λ)−1 y
)

dλ = 1

2π i

∮

�k

λ

λ − λk

a−1(λk)dλ = λkResλk

(

G
(

T (λ)−1 y
))

,

where the regular part of the Laurent series vanishes and only the principal part remains. Rearranging yields the eigenvalue

λk =
Resλk

(

λG
(

T (λ)−1 y
))

Resλk

(

G
(

T (λ)−1 y
))

inside of the contour �k .
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2.2. Generalized approach

The idea of the previous subsection can be generalized. Firstly, we assume that the pole λk has an order p ≥ 1 and 
consider a function f : � → C which is holomorphic on �k and inside of �k yielding

1

2π i

∮

�k

f (λ)G
(

T (λ)−1 y
)

dλ =
−1
∑

n=−p

an(λk)
1

2π i

∮

�k

f (λ)(λ − λk)
n dλ =

−1
∑

n=−p

an(λk)
f (λk)

(−n−1)

(−n − 1)! . (4)

The coefficients a−p(λk), . . . , a−1(λk) correspond to the Laurent series for G
(

T (λ)−1 y
)

in Eq. (2). Secondly, we choose a 
contour � ⊂ � on which G

(

T (λ)−1 y
)

is holomorphic and which encloses finitely many poles λ1, . . . , λm of G
(

T (λ)−1 y
)

. 
Cauchy’s residue theorem is used [17] so that Eq. (4) can be extended to

1

2π i

∮

�

f (λ)G
(

T (λ)−1 y
)

dλ =
m

∑

j=1

−1
∑

n=−p

an(λ j)
f (λ j)

(−n−1)

(−n − 1)! , (5)

where f (λ) has to be holomorphic on � and inside of �. Equation (5) contains the eigenvalues λ1, . . . , λm of the residual 
function T (λ). To explore the information for these m unknowns, we introduce several weight functions f1(λ), . . . , fM(λ) and 
construct the nonlinear system of equations (NLSE)

μk = Fk(λ1, . . . , λm), k = 1, . . . ,M, (6)

where

μk := 1

2π i

∮

�

fk(λ)G
(

T (λ)−1 y
)

dλ, Fk(λ1, . . . , λm+) =
m

∑

j=1

−1
∑

n=−p

an(λ j)
fk(λ j)

(−n−1)

(−n − 1)! .

Solving this NLSE yields the eigenvalues inside of the contour �. The NLSE can be solved with standard solvers, e.g., non-
linear system solvers based on least-square algorithms. In this work, we use fsolve from MATLAB. Note that the residues 
a−1(λk) are functions depending on λk . Instead of evaluating these functions, we regard them as unknowns themselves. We 
further note that the function G

(

T (λ)−1 y
)

can be chosen according to the underlying physical problem, e.g., it can be a 
physical observable. In this way, the numerical solution of T (λ)−1 y is considered as a blackbox.

2.3. Riesz projections with physical source fields

The Riesz projector

P (T (λ),�) := 1

2π i

∮

�

T (λ)−1 dλ (7)

for a matrix function T (λ) and a contour � projects vectors y onto the eigenspace associated with the eigenvalues inside 
of � [18]. In particular, for a contour �k enclosing one simple eigenvalue λk and a random vector y as in Sec. 2.1, the 
corresponding eigenvector is given by vk = P (T (λ), �k)y.

By choosing y corresponding to a physical source field, it is possible to distinguish between physically relevant and 
nonrelevant eigenvalues. To illustrate this, a discretized partial differential equation T (λ)u = y, where y ∈ Cn is a source 
field and u ∈ Cn is the solution of the problem, is regarded. We consider an eigenvalue λk to be insignificant if the Riesz 
projection P (T (λ), �k)y, where �k encloses only λk , is of the order of a given target accuracy. If the physical source field y
is orthogonal to an eigenvector vk , then P (T (λ), �k)y is of the order of the discretization error. However, for many problems 
with insignificant eigenvalues, P (T (λ), �k)y is larger than the discretization error as the physical source field y has a small 
coupling to the corresponding eigenvector. The target accuracy has to be chosen according to this. Note that insignificant 
eigenvalues have a small influence on the NLSE given by Eq. (6) and are therefore filtered out by solving the NLSE.

In this work, we aim at computing spectral projections instead of individual eigenvectors. When an eigenvalue λk is 
approximated by the NLSE, we define a further contour �̃k around this eigenvalue and compute the Riesz projection 
P (T (λ), �̃k)y. This contour may include also insignificant eigenvalues which are fully incorporated in the Riesz projec-
tion. Note that �̃k could be chosen, so that clustered physically relevant eigenvalues lie inside the contour. In this way, the 
corresponding eigenvectors are treated as a single spectral projection [19].
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Algorithm 1: For NLEVPs T (λ)v = 0, T (λ) ∈ Cn×n, v ∈ Cn, λ ∈ C.

1: Choose: contour �, quadrature rule, integration points λ̂1, . . . , ̂λN ,

size M of NLSE, weight functions f1(λ), . . . , fM (λ),

model Fk(λ1, . . . , λm) with number of unknowns m,

initial guess for NLSE
2: Define: physical source field y ∈ Cn , function G : Cn → C, e.g., physical observable
3: Solve: linear systems T (λ̂k)v̂k = y, k = 1, . . . , N
4: Compute: μk := 1

2π i

∮

�
fk(λ)G

(

T (λ)−1 y
)

dλ, k = 1, . . . , M ,

using quadrature rule with v̂1, . . . , ̂vN

5: Solve: NLSE μk = Fk(λ1, . . . , λm), k = 1, . . . , M
6: Define: contours �̃1, . . . , ̃�m enclosing eigenvalues λ1, . . . , λm

7: Compute: Riesz projections P (T (λ), ̃�k)y := 1
2π i

∮

�̃k
T (λ)−1 y dλ, k = 1, . . . , m

8: return approximate eigenvalues λ1, . . . , λm , Riesz projections P (T (λ), ̃�1)y, . . . , P (T (λ), ̃�m)y

2.4. Algorithm

To study physical systems where NLEVPs given by Eq. (1) occur, we propose Algorithm 1. The algorithm can be sketched 
as follows. A contour � which encloses the eigenvalues of interest has to be chosen (Step 1). Depending on the physical 
problem, a source field y and a function G are defined (Step 2). The contour integrals in Eq. (6) are computed with a 
suitable quadrature rule (Step 3-4). The evaluation of the integrand at the integration points essentially requires to solve 
linear systems of equations T (λ)−1 y.

The calculated integrals serve as the input data for solving the NLSE given by Eq. (6) (Step 5). The nonlinear model 
Fk(λ1, . . . , λm) is chosen based on the expected order of the physically relevant poles within � and based on the expected 
number m of poles. The number m can be estimated with physical a priori knowledge or, e.g., with Cauchy’s argument 
principle counting the zeros and poles of a meromorphic function. If m is greater than the number of physically relevant 
poles within �, then the algorithm returns relevant eigenvalues and also results which are insignificant. Here, the used 
nonlinear solver exploits more degrees of freedom, where some insignificant unknowns λk and a−1(λk) have a very small 
influence on the physically relevant solutions. For example, an insignificant eigenvalue λk could be close to the integration 
contour and the corresponding residue a−1(λk) could be so small that the product of these two unknowns is of the order 
of the given target accuracy. On the other hand, if m is smaller than the number of physically relevant eigenvalues, then 
the nonlinear model Fk(λ1, . . . , λm) does not fit to the physical problem and Algorithm 1 returns unsuitable results. The 
error can be estimated by computing Riesz projections and the algorithm has to be restarted with an increasing m. To solve 
the NLSE, an initial guess is required. If no a priori information about the eigenvalues is available, then randomly chosen 
numbers inside of the contour � are a possible choice.

The results of solving the NLSE are approximations to eigenvalues where eigenvalues with high physical impact regarding 
the source field y are prioritized. By defining contours �̃k around these eigenvalues (Step 6), Riesz projections P (T (λ), �̃k)y

can be computed (Step 7). Note that more than one eigenvalue can be inside of �̃k . The algorithm returns approximations 
λ1, . . . , λm and Riesz projections P (T (λ), �̃1)y, . . . , P (T (λ), �̃m)y (Step 8).

Algorithm 1 is parallelizable on two levels. Firstly, the complete algorithm can be performed for different contours �
simultaneously. This can be useful if eigenvalues in different regions are of interest. Secondly, solving the linear systems for 
the numerical integration can be done in parallel.

2.5. Numerical realization

We realize the numerical integration in Algorithm 1 with an N-point trapezoidal rule. The integration path � is a circular 
contour, which leads to exponential convergence [20]. The equidistant integration points are given by λ̂k = λ0 + re2π ik/N , 
k = 1, . . . , N , where λ0 and r are the center and the radius of �, respectively. Note that recently, rational filter functions for 
contour integral discretizations have been designed using optimization techniques [21]. However, for the sake of simplicity, 
we use a trapezoidal rule. To solve the linear systems of equations T (λ̂k)

−1 y, an LU decomposition can be used. The LU 
decomposition needs not to be updated at each integration point. Instead, for sufficiently small changes in λ̂k , the LU 
decomposition of a previous evaluation can be used as a preconditioner for iterative solving. This leads to a more efficient 
numerical implementation.

In the following section, we consider physical examples with simple eigenvalues, i.e., the nonlinear model in Eq. (6)

simplifies to

Fk(λ1, . . . , λm) =
m

∑

j=1

a−1(λ j) fk(λ j).
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Equation (6) is solved with the nonlinear solver fsolve from MATLAB. We regard the residues a−1(λ1), . . . , a−1(λm) as un-
known variables themselves and set M = 2m to construct non-underdetermined NLSEs. This handling of the residues allows 
for a simpler numerical realization. For the weight functions, we choose the scaled polynomials

fk(λ) =
(

λ − λ0

r

)k−1

, k = 1, . . . ,M.

Due to the fact that the weight functions are known and that we treat the residues as unknowns, also the Jacobians can be 
provided for the nonlinear solver.

3. Application of the method

We apply Algorithm 1 to a quadratic NLEVP resulting from the Schrödinger equation and to two rational NLEVPs resulting 
from Maxwell’s equations. These quantum mechanical and nanophotonic examples are open systems, which are described by 
non-Hermitian operators. In physics, the eigensolutions of such problems are usually called resonant states or quasinormal 
modes (QNMs) [22–24]. Material dispersion is omnipresent in such systems and the physical understanding of the resonance 
phenomena through numerical simulations is an active research topic. A common approach is a resonance expansion [8,25], 
where the solutions of the open systems are expanded into weighted sums of QNMs. In this context, the coupling of a 
QNM to a source field is quantified by the corresponding single expansion term. Physically relevant QNMs lead to significant 
contributions in the resonance expansion.

The physical systems are numerically discretized with the finite element method (FEM) [26,27]. We use the software 
package JCMsuite to discretize and to solve the nanophotonic problems in Secs. 3.2 and 3.3. Note that also other numerical 
methods and implementations could be used for applying Algorithm 1.

3.1. Resonant states in an open quantum system

Propagation of a quantum particle of effective mass m∗ through a one-dimensional potential V (x) can be described by 
the time-independent Schrödinger equation

− h̄

2

∂

∂x

(

1

m∗
∂�(x)

∂x

)

+ V (x)�(x) = E�(x), (8)

where h̄ is the Planck constant, E is the energy and �(x) is the unknown wave function. For a detailed description and 
motivation of this example, see [28]. To compute the eigenvalues of this problem in the domain [−L, L], we use the approach 
of [15] to scale and discretize Eq. (8) yielding the quadratic NLEVP

T (λ)v =
(

λ2A2 + iλA1 − A0

)

v = 0,

where

A2 = h

6

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 1 0 0 . . . 0

1 4 1 0 . . . 0

0 1 4 1 . . . 0
...

. . .
...

0 . . . 0 1 4 1

0 . . . 0 0 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 . . . 0 0

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

0 0 . . . 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

A0 = 1

h

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

. . .
...

0 . . . 0 −1 2 −1

0 . . . 0 0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− V0A2 ∈ R
n+2×n+2.

The same parameters as in [15] are chosen, where L = π/
√
2, V (x) = V0 = 10, and the spatial step size is h = 2L/(n + 1)

with n = 302.

In order to demonstrate a numerical realization of Algorithm 1 which yields all eigenvalues inside a chosen contour, we 
choose a unit random vector y ∈ C304 and the function G(T (λ)−1 y) = xH T (λ)−1 y, where x ∈ C304 is also a unit random 
vector. A circular contour � with the center λ0 = 5 and the radius r = 2.5 is considered. Solutions for an increasing number 
N of integration points and for different numbers of unknown eigenvalues, m = 6, . . . , 8, are computed. The maximum rela-
tive errors maxk Re(λk −λk,ref)/Re(λk,ref) and maxk Im(λk −λk,ref)/Im(λk,ref) are shown in Fig. 1(a). Exponential convergence 
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Fig. 1. Results for computing eigenvalues of an open quantum system [28]. (a) Maximum relative errors, maxk Re(λk − λk,ref)/Re(λk,ref) and maxk Im(λk −
λk,ref)/Im(λk,ref), k = 1, . . . , m, as a function of the number N of integration points. The eigenvalues λk are computed with Algorithm 1. The reference solu-
tions λk,ref are computed by applying MATLAB’s function eigs to the linearized problem. (b) Eigenvalues and integration contour. The numerical integration 
is performed with N = 150 integration points and the NLSE is solved for m = 6 unknowns.

up to a certain accuracy is obtained. It can be further observed that for small N and an increasing m, the residuals become 
smaller. Here, the nonlinear solver can exploit more degrees of freedom, i.e., also eigenvalues outside the contour can be 
approximated. These solutions are discarded. The results of Algorithm 1 can be compared with solutions of the linearized 
problem [15] computed with MATLAB’s function eigs. These reference solutions and the eigenvalues computed by Algo-
rithm 1 with N = 150 and m = 6 are shown in Fig. 1(b). Six eigenvalues inside of � are obtained by solving the linearized 
system. The eigenvalues resulting from Algorithm 1 coincide with these reference solutions.

3.2. Photonic nanoantenna

In the second numerical experiment, we consider a nanophotonic structure. Nanoantennas allow, e.g., for realizing single-
photon emitters for quantum technology devices [29]. We apply Algorithm 1 to an example from [19], where a defect in a 
diamond nanodisk is considered as solid-state single-photon emitter. In the steady-state regime, the light-matter interaction 
of such a structure can be described by the time-harmonic Maxwell’s equations in the second-order form

∇ × μ(r,ω)−1∇ × E(r,ω) − ω2ε(r,ω)E(r,ω) = iωJ(r), (9)

with the electric field E(r, ω) ∈ C3 and the source term J(r) ∈ C3 as impressed current, where r ∈ R3 is the position. The 
permittivity tensor ε(r, ω) characterizes the spatial distribution of materials and, through its dependence on the complex 
angular frequency ω ∈ C, the material dispersion. In the regime of optical frequencies, the permeability tensor μ(r, ω) can 
typically be set to the vacuum permeability μ0 . Equation (9) is discretized and solved with the software package JCMsuite. 
The scattering solutions, i.e., solutions of Eq. (9) in presence of a source term, are computed in the ω2 plane. The outgoing 
radiation conditions for the diamond nanoresonator are realized with perfectly matched layers (PMLs) [30]. We refer to [19]
for details on the FEM implementation and for details on the physical system.

The aim is to compute eigenfrequencies ωk of the discretized NLEVP associated with Eq. (9). As the permittivity tensor 
ε(r, ω) is a rational function, this is a rational NLEVP. The interest is in eigenfrequencies corresponding to physically relevant 
eigenvectors, the QNMs of the system, and, in particular, in eigenfrequencies which QNMs couple to specific source fields. 
We use the source fields described in [19], which are dipole emitters located inside the nanoresonator. Accordingly, physical 
source fields y for Algorithm 1 are chosen as Eq. (9) is solved with dipole emitters for complex frequencies ω at the 
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Fig. 2. Results for computing eigenfrequencies of a dielectric nanoantenna [19]. Algorithm 1 leads to numerical convergence for the eigenfrequency ω1,16 =
(1.7190 − 0.0992i) × 1031 s−2 . The numerical integration is performed using N = 200 integration points. (a) Relative errors for the real parts are shown as 
a function of the number of unknowns m for the NLSE. The reference solutions ωk,16 are computed with m = 16. (b) Eigenfrequencies ωk,16 computed with 
Algorithm 1 using m = 16 unknowns. The reference solutions ωk,ref are computed with an Arnoldi algorithm. Physically relevant QNM poles are isolated 
eigenfrequencies and the physically nonrelevant PML poles lie in a cluster. (e) Relative errors for the real and imaginary parts of the most accurate solution 
ω1,16 , where the reference solution ω1,ref results from the Arnoldi algorithm.

integration contour. The function G(T (ω)−1 y) is a point evaluation of the electric field at one chosen spatial point with a 
suitable scaling.

A circular contour � is selected where the center is ω2
0 = (1 − 0.5i) × 1031 s−2 and the radius is r = 1 × 1031 s−2 . We 

apply Algorithm 1 while setting N = 200 integration points and solving the NLSE for m = 6, . . . , 16 unknowns. The l-th 
solution of the algorithm is denoted by ωl,m , where l = 1, . . . , m. To study the numerical convergence of the real parts of 
the solutions, we use the computed eigenfrequencies ωk,16 , k = 1, . . . , 16, as reference solutions. Fig. 2(a) shows, for each 
m = 6, . . . , 16 and k = 1, . . . , 16, the minimum relative errors minl(Re(ωl,m − ωk,16)/Re(ωk,16)), where l = 1, . . . , m. This 
means that at each step, the eigenfrequencies which are closest to the reference solutions ωk,16 are identified. Note that we 
investigate this error quantity because the aim is to show which of the solutions ωk,16 , k = 1, . . . , 16, are physically relevant. 
It is expected that physically relevant eigenfrequencies converge with respect to m and, for insignificant eigenfrequencies, Al-
gorithm 1 shows no convergence. For the eigenfrequency ω1,16 = (1.7190 − 0.0992i) ×1031 s−2 , relative errors smaller than 
10−8 are observed. For the eigenfrequencies ω2,16 = (1.429 − 0.211i) × 1031 s−2 and ω3,16 = (1.326 − 0.863i) × 1031 s−2 , 
relative errors smaller than 10−4 are obtained. The results ω4,16, . . . , ω16,16 have relative errors larger than 10−4 .

Fig. 2(b) shows the solutions ωk,16 using m = 16 and solutions ωk,ref computed with the eigensolver from JCMsuite, 
which applies an Arnoldi algorithm using auxiliary fields. Fig. 2(c) shows the relative errors for the real and imaginary parts 
of the solutions of Algorithm 1 which are closest to the reference solution ω1,ref computed with the Arnoldi algorithm. 
For m = 16, we observe relative errors of about 10−7 and 10−6 for the real and imaginary part, respectively. The accuracy 
limitation can be attributed to the accuracy of the scattering problem solver from JCMsuite.

The eigenvectors of the investigated NLEVP associated with Eq. (9) can be classified into QNMs and PML modes [31,

8]. The QNMs have a physical meaning and the corresponding eigenfrequencies, the QNM poles, are associated with the 
discrete spectrum of the underlying operator. The PML modes correspond to eigenfrequencies which are associated with the 
continuous spectrum of the operator. These PML poles are algebraic eigenfrequencies depending on the FEM discretization of 
the open resonator system. As shown in Fig. 2(b), the PML poles are clustered in the complex plane [31]. With this numerical 
experiment, we show that with Algorithm 1 it is possible to compute a physically relevant eigenfrequency which is close 
to insignificant eigenfrequencies. The eigenfrequency ω1,16 corresponds to the QNM which is responsible for the largest 
peak of the normalized dipole emission, the Purcell factor, in the frequency range 0.5 × 1031 s−2 ≤ Re(ω2) ≤ 2.5 × 1031 s−2 , 
see [19]. This means that this QNM has a significant coupling to the used dipole sources in this frequency range [19]. The 
eigenfrequencies ω2,16 and ω3,16 also correspond to QNMs, however, the coupling is less significant. Algorithm 1 does not 
converge to PML poles due to the small coupling of the PML modes to the applied dipole sources.
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Fig. 3. Results for computing eigenfrequencies and Riesz projections for a nanowire based on the hydrodynamic Drude model [32]. (a) Algorithm 1 yields 
five eigenfrequencies, ω1, . . . , ω5 , inside a chosen contour. The numerical integration is performed using N = 32 integration points and the NLSE is solved 
for m = 6 unknowns. The reference solutions ωk,ref are taken from [32], where an algorithm proposed by Beyn [13] is applied. (b-f) Integration contours 
�̃1, . . . , ̃�5 around the eigenfrequencies ω1, . . . , ω5 . (g) Residuals res(ω̃k) = ||T (ω̃k)(P (T (ω), ̃�k)y)||2/||T (ω̃k)||F , where ||P (T (ω), ̃�k))||2 = 1, for each of 
the Riesz projections P (T (ω), ̃�1)y, . . . , P (T (ω), ̃�5)y computed with a different number of integration points N . The eigenfrequencies ω̃k are computed 
by Algorithm 1 for the contours �̃k with m = 1 and the corresponding N .

3.3. Resonances based on the hydrodynamic Drude model

In the third numerical experiment, Algorithm 1 is applied to a nanostructure described by the hydrodynamic Drude 
model. This material model takes spatially nonlocal interactions of the electron gas and the light into account and is used for 
describing light-matter interaction in nanostructures on the scale of a few nanometers [33,34]. For nonmagnetic materials, 
the inclusion of nonlocal material properties leads to the coupled system of equations

∇ × μ−1
0 ∇ × E(r,ω) − ω2εloc(r,ω)E(r,ω) = iωJhd(r,ω) + iωJ(r,ω), (10)

β2∇ (∇ · Jhd(r,ω)) + ω (ω + iγ ) Jhd(r,ω) = iωω2
pε0E(r,ω) (11)

for the electric field E(r, ω) and the hydrodynamic current density Jhd(r, ω). The current density J(r, ω) is the impressed 
source field. The permittivity tensor εloc(r, ω) corresponds to the local material response, ε0 is the vacuum permittivity, and 
μ0 is the vacuum permeability. The plasma frequency ωp and the damping constant γ are associated with the local Drude 
model εd(ω) = ε0(ε∞ −ω2

p/(ω
2 + iγω)), where ε∞ is the relative permittivity at infinity. The system constant β =

√
3/5 vF

includes the Fermi velocity vF [35]. The coupled system given by Eqs. (10) and (11) is discretized and solved with the 
software package JCMsuite.

We consider a metal nanowire from [32], where the eigenpairs have been computed using the contour integral method 
proposed by Beyn [13]. Furthermore, a modal analysis of the extinction cross section has been performed. The nanowire 
has been illuminated by plane waves. We refer to [32] for details on the physical parameters describing the nanowire and 
for details on the FEM realization. Here, the aim is to compute only those eigenfrequencies which QNMs have a significant 
coupling to these plane waves. Physical source fields y for Algorithm 1 are chosen by solving the coupled system given by 
Eqs. (10) and (11) for plane waves with frequencies at the centers of the integration contours. For all computations, we 
choose G(T (ω)−1 y) = β yT T (ω)−1 y, where β ∈ R is a scaling factor.
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First, for the integration contour � with a center at ω0 = 1.175ωp and a radius of r = 0.175ωp , where ωp =
8.65 × 1015 s−1 , Algorithm 1 is applied with N = 32 integration points and m = 6 unknowns. Fig. 3(a) shows the re-
sults of Algorithm 1 and reference solutions from [32]. Algorithm 1 yields five eigenfrequencies, ω1 = (1.030 − 0.005i)ωp , 
ω2 = (1.079 − 0.005i)ωp , ω3 = (1.145 − 0.005i)ωp , ω4 = (1.227 − 0.005i)ωp , ω5 = (1.320 − 0.005i)ωp , inside of �. With 
respect to the reference solutions, the relative errors of their real and imaginary parts are smaller than 1.7 × 10−5 and 
1.5 × 10−3 , respectively.

Secondly, the Riesz projections P (T (ω), �̃k)y are computed for contours �̃k around each of the eigenfrequencies 
ω1, . . . , ω5 . The contours �̃1, . . . , �̃5 are shown in Fig. 3(b), 3(c), 3(d), 3(e), and 3(f), respectively. Fig. 3(g) shows the resid-
uals res(ω̃k) = ||T (ω̃k)(P (T (ω), �̃k)y)||2/||T (ω̃k)||F , where ||P (T (ω), �̃k))||2 = 1, for each of the Riesz projections computed 
with different numbers of integration points. The eigenfrequencies ω̃k are obtained by applying Algorithm 1 for �̃k with 
different N and a fixed m = 1. The residuals become smaller with an increasing N . For N = 20, all residuals are smaller than 
1.2 × 10−11 .

Algorithm 1 allows for computing only those eigenfrequencies which QNMs couple to the plane wave defined by the 
source field y. The remaining eigenvectors which eigenfrequencies are located inside the contour � are also QNMs and they 
may are relevant for another physical problem, however, they are insignificant regarding the here applied source field [32]. 
This means that small residuals can be observed in Fig. 3(g) although the contours �̃k contain several eigenfrequencies. 
The Riesz projections P (T (ω), �̃k)y are physically meaningful as they mainly consist of contributions from the physically 
relevant QNMs. In [32], the same eigenfrequencies have been identified as the physically relevant eigenfrequencies for the 
plane wave excitation. However, the approach from [32] requires calculation and investigation of the full electric fields 
corresponding to the QNMs and is not as much straightforward.

4. Conclusions

We presented a method based on contour integration for computing eigenvalues and associated spectral projections 
of general NLEVPs. Due to choosing specific physical source fields y for the projection by contour integrals, only physically 
meaningful eigenvalues are accessed. Instead of computing individual eigenvectors corresponding to these eigenvalues, Riesz 
projections for frequency ranges of interest are computed. In this way, an expensive computation of a multitude of eigenpairs 
where most of them are not physically relevant can be circumvented. Numerical realizations were applied to non-Hermitian 
problems from the fields of quantum mechanics and nanophotonics.

We considered the numerical solution of T (λ)−1 y as a blackbox and extracted eigenvalue information by introducing the 
meromorphic function G(T (ω)−1 y), which can be a physical observable, e.g., a point evaluation as in Sec. 3.2. Instead of 
global eigenfunctions, modal contributions in form of Riesz projections, e.g., modal Purcell factors [19] or modal extinction 
cross sections [32], can be computed. In this way, eigenvalues can still be extracted without the need of a global approx-
imation of the solution field T (λ)−1 y. Therefore, we expect that the algorithm will prove especially useful for approaches 
without a vector representation of the solution field, such as semi-analytical methods. Recently, the presented approach has 
been compared with standard eigensolvers for NLEVPs resulting from applications in nanophotonics [7].
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6 Computing eigenfrequency sensitivities

using Riesz projections

Nanoresonators with high Q-factors are used in various applications [95, 96]. The
Q-factor of a resonance characterizes its spectral confinement, which is directly related
to the corresponding eigenfrequency ω̃m,

Q =
Re(ω̃m)

−2Im(ω̃m)
.

In the case of a high-Q resonance, the Q-factor describes the relation between stored
and radiated electromagnetic field energy [25]. For the fabrication of high-Q nanores-
onators [26] and for the computation and optimization of the corresponding Q-factors,
the knowledge of the eigenfrequency sensitivities is essential. The eigenfrequency sensi-
tivities are usually computed with the finite difference method, which is a costly approach
in terms of computational effort.
In Ref. [68], we develop a Riesz-projection-based approach for the computation of

eigenfrequency sensitivities. The approach is based on the considerations from Chap-
ter 5, where Riesz projections are used to compute the eigenfrequency ω̃m. Partial dif-
ferentiation of Eq. (5.1) with respect to a parameter p directly gives the corresponding
eigenfrequency sensitivity,

∂ω̃m

∂p
=

(

∂g

∂p
h− g

∂h

∂p

)

1

h2
,

g =

∮

Cm

ωL (E(r, ω)) dω, h =

∮

Cm

L(E(r, ω)) dω,

∂g

∂p
=

∮

Cm

ωL

(

∂E(r, ω)

∂p

)

dω,
∂h

∂p
=

∮

Cm

L

(

∂E(r, ω)

∂p

)

dω.

(6.1)

The computation of the contour integrals requires the solution of scattering problems
given by Eq. (2.1). In order to solve the corresponding linear system of equations
(

A− ω2B(ω)
)

u = f(ω), where u is the scattered electric field E(r, ω) in a finite di-
mensional FEM basis, an LU -decomposition of the matrix A − ω2B(ω) is calculated.
This LU -decomposition, which is a computationally expensive step in the FEM context,
can also be used to solve the linear system of equations for ∂u/∂p,

(

A− ω2B(ω)
) ∂u

∂p
=

∂f(ω)

∂p
−

∂
(

A− ω2B(ω)
)

∂p
u.

This approach is referred to as direct differentiation [97, 98] and allows for an efficient
numerical implementation of Eq. (6.1).
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We apply the Riesz-projection-based approach combined with direct differentiation to
a resonance which is based on exploiting a quasi bound state in the continuum (BIC) [99].
We compute the eigenfrequency sensitivities of the resonance with respect to several
shape parameters of the underlying nanoresonator. A significant reduction in computa-
tional effort compared to the use of finite differences can be observed. The computation
of the sensitivities is then exploited to optimize the Q-factor of the resonance.
In the following, Ref. [68] is reprinted, which is an open access article distributed

under the terms of the Creative Commons CC BY license; [Felix Binkowski, Fridtjof
Betz, Martin Hammerschmidt, Philipp-Immanuel Schneider, Lin Zschiedrich, and Sven
Burger. Computation of eigenfrequency sensitivities using Riesz projections for effi-
cient optimization of nanophotonic resonators. Commun. Phys. 5, 202 (2022). doi:

10.1038/s42005-022-00977-1.]

42

https://dx.doi.org/10.1038/s42005-022-00977-1


ARTICLE

Computation of eigenfrequency sensitivities using
Riesz projections for efficient optimization of
nanophotonic resonators
Felix Binkowski 1, Fridtjof Betz 1, Martin Hammerschmidt 2, Philipp-Immanuel Schneider2,

Lin Zschiedrich2 & Sven Burger 1,2✉

Resonances are omnipresent in physics and essential for the description of wave phenomena.

We present an approach for computing eigenfrequency sensitivities of resonances. The

theory is based on Riesz projections and the approach can be applied to compute partial

derivatives of the complex eigenfrequencies of any resonance problem. Here, the method is

derived for Maxwell’s equations. Its numerical realization essentially relies on direct differ-

entiation of scattering problems. We use a numerical implementation to demonstrate the

performance of the approach compared to differentiation using finite differences. The method

is applied for the efficient optimization of the quality factor of a nanophotonic resonator.

https://doi.org/10.1038/s42005-022-00977-1 OPEN

1Zuse Institute Berlin, 14195 Berlin, Germany. 2 JCMwave GmbH, 14050 Berlin, Germany. ✉email: burger@zib.de

COMMUNICATIONS PHYSICS |           (2022) 5:202 | https://doi.org/10.1038/s42005-022-00977-1 | www.nature.com/commsphys 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00977-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00977-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00977-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-022-00977-1&domain=pdf
http://orcid.org/0000-0002-4728-8887
http://orcid.org/0000-0002-4728-8887
http://orcid.org/0000-0002-4728-8887
http://orcid.org/0000-0002-4728-8887
http://orcid.org/0000-0002-4728-8887
http://orcid.org/0000-0003-2193-7188
http://orcid.org/0000-0003-2193-7188
http://orcid.org/0000-0003-2193-7188
http://orcid.org/0000-0003-2193-7188
http://orcid.org/0000-0003-2193-7188
http://orcid.org/0000-0003-0291-1599
http://orcid.org/0000-0003-0291-1599
http://orcid.org/0000-0003-0291-1599
http://orcid.org/0000-0003-0291-1599
http://orcid.org/0000-0003-0291-1599
http://orcid.org/0000-0002-3140-5380
http://orcid.org/0000-0002-3140-5380
http://orcid.org/0000-0002-3140-5380
http://orcid.org/0000-0002-3140-5380
http://orcid.org/0000-0002-3140-5380
mailto:burger@zib.de
www.nature.com/commsphys
www.nature.com/commsphys


R
esonance phenomena are ubiquitous in nanophotonics and
play an important role for tailoring light–matter
interactions1,2. They are exploited in, e.g., single-photon

sources for quantum technology3, biosensors4, nanolasers5, or
solar energy devices6,7. All these applications rely on the highly
localized electromagnetic field energies in the vicinity of the
underlying nanoresonators8. A central figure of merit for the
description of resonance effects is the quality (Q) factor, which
quantifies, in the case of low-loss systems, the relation between
stored and radiated field energies of the resonances9. Nanores-
onators with low energy dissipation, i.e., with high Q-factors, have
been proposed to improve the efficiencies of nanophotonic
devices2,10. For example, high-Q resonators can boost the
brightness of quantum emitters, the sensitivity of sensors, or the
emission processes in plasmonic lasers11. Designing devices with
numerical optimization is a time and cost-effective approach. The
resonances are numerically computed by solving the source-free
Maxwell’s equations equipped with open boundary conditions12.
This yields non-Hermitian eigenproblems and the solutions are
eigenmodes with complex-valued eigenfrequencies. In this con-
text, the Q-factor is defined as the scaled ratio of the real and
imaginary parts of the eigenfrequency.

Nanoresonators with high Q-factors have been theoretically
presented, but fabrication of these resonators is a limiting task11.
The sensitivity analysis of eigenfrequencies can show a way to
reduce the sensitivities of the Q-factors. This can support the
nanofabrication processes. Furthermore, the sensitivity analysis of
eigenfrequencies is essential for numerical simulation. For
example, the numerical accuracies of the calculated eigen-
frequencies are strongly influenced by the sensitivities of the
eigenfrequencies when the systems are subject to small
perturbations13,14. In particular, for high-Q resonators, the
accuracy requirements are demanding since the real and ima-
ginary parts of the eigenfrequencies differ by several orders of
magnitude. Sensitivities are also directly exploited in numerical
optimization algorithms using gradients15, for gradient-enhanced
surrogate modeling16, and for local sensitivity analyses17. The
computation of eigenfrequency sensitivities is usually based on
perturbation theory18,19, where the sensitivity of the underlying
operator, the left and the right eigenmodes, and a proper nor-
malization of the eigenmodes are required. The solution of the
perturbed systems, on the other hand, is not necessary. For
resonance problems, left and right eigenmodes are in general not
identical, which increases the computational effort, and normal-
ization requires additional attention. There are specialized
approaches that, e.g., exploit magnetic fields for extracting the left
eigenmodes20, introduce an adjoint system for computing
sensitivities21, or that rely on internal and external electric fields
at the boundaries of the nanoresonators22. It is also possible to
completely omit the use of eigenmodes for sensitivity analysis23.
A further approach is the straightforward application of finite
differences. However, this also includes the solution of the per-
turbed resonance problems, which increases the computational
effort.

In this work, we present an approach for computing eigen-
frequency sensitivities that completely avoids solving resonance
problems. The approach is based on Riesz projections given by
contour integrals in the complex frequency plane. The contour
integrals are numerically accessed by solving Maxwell’s equa-
tions with a source term enabling an efficient numerical reali-
zation using direct differentiation. The numerical experiments
show a significant reduction in computational effort compared
to applying finite differences. A Bayesian optimization algo-
rithm with the incorporation of eigenfrequency sensitivities
is used to optimize a resonator hosting a resonance with a high
Q-factor.

Results
Theoretical background and numerical realization. We start
with an introduction of the theoretical background on resonance
phenomena occurring in nanophotonics. Based on this, Riesz
projections for computing eigenfrequency sensitivities and an
efficient approach for its numerical realization are presented.

Resonances in nanophotonics. In nanophotonics, in the steady-
state regime, light–matter interactions can be described by the
time-harmonic Maxwell’s equations in second-order form,

∇ ´ μ�1
0 ∇ ´Eðr;ω0Þ � ω2

0ϵðr;ω0ÞEðr;ω0Þ ¼ iω0JðrÞ; ð1Þ

where Eðr;ω0Þ 2 C
3 is the electric field, r 2 R

3 is the position,

ω0 2 R is the angular frequency, and JðrÞ 2 C
3 is the electric

current density corresponding to a light source. In the optical
regime, the permeability tensor μ(r, ω0) typically equals the vacuum
permeability μ0. The permittivity tensor ϵ(r,ω0)= ϵr(r, ω0)ϵ0,
where ϵr(r,ω0) is the relative permittivity and ϵ0 the vacuum per-
mittivity, describes the spatial distribution of material and the
material dispersion. Solutions to Eq. (1) are called scattering
solutions as light from a source is scattered by a material system.

Resonances are solutions to Eq. (1) without a source term, i.e.,
J(r)= 0, and with transparent boundary conditions. The
boundary conditions lead to non-Hermitian eigenproblems,
and, if material dispersion is also present, the eigenproblems
become nonlinear. The electric field distribution of an eigenmode

is denoted by ~EðrÞ 2 C
3 and the corresponding complex-valued

eigenfrequency by ~ω 2 C. The Q-factor of a resonance is defined
by

Q ¼
Reð~ωÞ

�2Imð~ωÞ

and describes its spectral confinement. In the limiting case of
vanishing losses, this definition agrees with the energy definition,
according to which the Q-factor quantifies the relation between
stored and dissipated electromagnetic field energy of a
resonance9.

In the following, a nanophotonic resonator supporting a
resonance with a high Q-factor is investigated. We compute the
eigenfrequency sensitivities with respect to various parameters to
optimize the Q-factor of the nanoresonator. Figure 1 sketches the
applied framework for an exemplary problem, a one-dimensional
resonator defined by layers with different permittivities. Changes

ϊp of the parameter p lead to changes in the eigenmode ~E and in
the corresponding eigenfrequency ~ω, which describes the

sensitivity of ~E and ~ω with respect to the parameter p. To
compute the eigenfrequency sensitivity, we introduce a contour-
integral-based approach using Riesz projections, where physical
observables are extracted from scattering problems. Solving the
scattering problems, which are linear systems, can be regarded as
a blackbox24,25.

Riesz projections for eigenfrequency sensitivities. To derive a Riesz-
projection-based approach for computing eigenfrequency sensi-
tivities, which are the partial derivatives of the eigenfrequency, we
consider the electric field Eðr;ω0 2 RÞ as a solution of Eq. (1) and
Eðr;ω 2 CÞ as an analytical continuation of E(r, ω0) into the
complex frequency plane. The field E(r, ω) is a meromorphic
function with resonance poles at the eigenfrequencies. To simplify
the notation, we omit the spatial and frequency dependency of
the electric field and write E when we mean E(r, ω).

Let LðEÞ be a physical observable, where L : C
3
! C is a

linear functional, and ~C be a contour enclosing the pole ~ω of the
order m and no other poles. Then, the Laurent expansion of LðEÞ
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about ~ω is given by

LðEÞ ¼ ∑
1

k¼�m
akðω� ~ωÞk;where

akð~ωÞ ¼
1

2ϋi

I

~C

LðEðωÞÞ

ðω� ~ωÞkþ1
dω 2 C:

ð2Þ

The coefficient a�1ð~ωÞ is the so-called residue of LðEÞ at ~ω.
Using Eq. (2) with the assumption that ~ω has the order m= 1 and
applying Cauchy’s integral formula yield

I

~C

ωLðEÞ dω ¼

I

~C

ω

ω� ~ω
a�1ð~ωÞ dω ¼ ~ω

I

~C

LðEÞ dω;

where, due to the closed integral in the complex plane, the regular
terms in the expansion vanish. With this, the eigenfrequency ~ω is
given by

~ω ¼

H

~C

ωLðEÞ dω

H

~C

LðEÞ dω
: ð3Þ

The contour integrals in this equation are essentially Riesz

projections for LðEÞ and ~C24. Partial differentiation with respect
to a parameter p directly gives the desired expression for the
eigenfrequency sensitivity,

∂~ω

∂p
¼

∂u

∂p
v � u

∂v

∂p

� �

1

v2
; where

u ¼

I

~C

ωLðEÞ dω; v ¼

I

~C

LðEÞ dω;

∂u

∂p
¼

I

~C

ωL
∂E

∂p

� �

dω;
∂v

∂p
¼

I

~C

L
∂E

∂p

� �

dω:

ð4Þ

For the interchangeability of integral and derivative, E and ∂E/
∂p are assumed to be continuously differentiable with respect to

the frequency ω and the parameter p. The eigenmode ~E and its

sensitivity ∂~E=∂p can be represented by the contour integrals

~E ¼

I

~C

E dω and
∂~E

∂p
¼

I

~C

∂E

∂p
dω;

respectively, which are Riesz projections applied to Maxwell’s
equations given by Eq. (1). This approach can be generalized for
multiple eigenfrequencies inside a contour as well as for higher
order poles; cf. Binkowski et al.24. Note that Riesz projections can
also be used to compute modal expansions of physical

observables, where scattering solutions are expanded into
weighted sums of eigenmodes26.

Numerical realization and direct differentiation. For the numer-
ical realization of the presented approach, the finite element
method (FEM) is applied. Scattering problems are solved by
applying the solver JCMSUITE27. The FEM discretization of Eq.
(1) leads to the linear system of equations AE= f, where A 2
C

n ´ n is the system matrix, E 2 C
n is the scattered electric field in

a finite-dimensional FEM basis, and f 2 C
n contains the source

term. The solver employs adaptive meshing and higher order
polynomial ansatz functions. In all subsequent simulations, it is
ensured that sufficient accuracies are achieved with respect to the
FEM discretization parameters. Note that also other methods can
be used for numerical discretization. In the field of nanopho-
tonics, common approaches are, e.g., the finite-difference time-
domain method, the Fourier modal method, or the boundary
element method12,28.

In order to calculate eigenfrequencies ~ω and their sensitivities
∂~ω=∂pi with respect to parameters pi, the electric fields E and
their sensitivities ∂E/∂pi are computed for complex frequencies
ω 2 C on the contours given in Eqs. (3) and (4). For the
calculation of ∂E/∂pi, we apply an approach based on directly
using the FEM system matrix29,30. With this direct differentiation
method, the sensitivities of scattering solutions can be computed
by

∂E

∂pi
¼ A�1 ∂f

∂pi
�

∂A

∂pi
E

� �

: ð5Þ

In a first step, instead of directly computing A−1, an LU-
decomposition of A, which can be seen as the matrix variant of
Gaussian elimination, is computed to efficiently solve the linear
system AE= f. In the FEM context, this step is usually a
computationally expensive step in solving scattering problems, so
reusing an LU-decomposition can significantly reduce computa-
tional costs. In a second step, the partial derivatives of the system
matrix, ∂A/∂pi, and of the source term, ∂f/∂pi, are obtained quasi
analytically, i.e., with negligible computational effort. Then, A= LU,
E, ∂A/∂pi, and ∂f/∂pi are used to compute ∂E/∂pi in Eq. (5). The LU-
decomposition can be used to obtain both E and ∂E/∂pi.

For the calculation of the contour integrals, a numerical
integration with a circular integration contour and a trapezoidal
rule is used, which leads to an exponential convergence behavior
with respect to the integration points31. At each integration point,
we calculate E and ∂E/∂pi by solving Eq. (1) with oblique incident
plane waves as source terms. The linear functional LðEÞ
corresponds to a spatial point evaluation of one component of
the electric field, which can be understood as physical observable.
Note that, with Eqs. (3) and (4), an eigenfrequency ~ω and its

Fig. 1 Schematic representation of computing eigenfrequency sensitivities of a resonator using contour integration. The system is defined by layers

with different permittivities ϵ1 and ϵ2 and is described by the one-dimensional Helmholtz equation�Δ~E� ~ω2
ϵ~E ¼ 0. A solution to the resonance problem is

given by the eigenmode ~E and the corresponding complex-valued eigenfrequency ~ω 2 C. The real part of the electric field of the eigenmode is sketched

with the solid black curve. A perturbation δp of the middle layer width p leads to a perturbed electric field, represented by the dashed red curve, and to a

perturbation ϊ~ω of the eigenfrequency. Computing contour integrals by solving linear systems AE= f and ∂=∂p AE ¼ f½ � in the complex frequency plane

yields the eigenfrequency sensitivity ∂~ω=∂p. Solving the linear systems is considered as a blackbox.
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sensitivity ∂~ω=∂pi can be calculated without solving resonance

problems ∇ ´ μ�1
∇ ´ ~E� ~ω2

ϵ~E ¼ 0 directly. Instead, scattering
problems, where Eq. (5) can be exploited, are solved. We call the
described approach, which combines Riesz projections and direct
differentiation (DD), the Riesz projection DD method. Equation
(4) and its numerical implementation exploiting Eq. (5) are the
main results of this work and represent the difference from
previous works on Riesz projections; cf. Zschiedrich et al.26.

Note that the Riesz projection DD method is not limited to the
field of nanophotonics, but can be applied to other eigenproblems
as well. Maxwell’s equations can be replaced by another partial
differential equation, and then instead of the analytical continua-
tion of the electric field E, the analytical continuation of another
quantity is evaluated for the contour integration.

Application
Eigenfrequency sensitivities of a nanophotonic resonator. We
investigate an example from the literature, a dielectric nanores-
onator of cylindrical shape placed on a three-layer substrate,
where constructive and destructive eigenmode interference has
been used to engineer a bound state in the continuum (BIC)32.
The nanoresonator has been designed taking into account various
parameters to suppress radiation losses: The radius, the layer
thicknesses, and the layer materials have been chosen to obtain a
high-Q resonance. The nanoresonator is made of the high-index
material aluminum gallium arsenide (AlGaAs) with 20% alumi-
num. A silicon dioxide (SiO2) spacer is placed between the
nanoresonator and a film of indium tin oxide (ITO) on a SiO2

substrate. A sketch of the designed system is shown in Fig. 2a. For
this specific configuration, a high-Q resonance with a Q-factor of
Q= 188 ± 5 has been experimentally observed, and numerical
simulations have resulted in Q= 197, where the real part of the
resonance wavelength is in the telecommunication wavelength

regime, close to 1600 nm. The nanophotonic resonator has been
exploited as a nanoantenna for nonlinear nanophotonics32.

In the following simulations, we consider the constant relative
permittivities ϵr= 10.81 and ϵr= 2.084 for AlGaAs and for SiO2,
respectively, which are extracted from experimental data32,33. For
the ITO layer, the Drude model ϵrðω0Þ ¼ ϵinf � ω2

p=ðω
2
0 þ iω0όÞ is

chosen, where ϵinf ¼ 3:8813, ωp= 3.0305 × 1015 s−1, and ό=
1.2781 × 1014 s−1. This Drude model is obtained by a rational fit34

to experimental data32 and describes the material dispersion of
the system. We further exploit the rotational symmetry of the
geometry. On the one hand, this reduces the computational effort
and, on the other hand, the eigenmodes can be easily
distinguished by their azimuthal quantum numbers m, which
correspond to the number of oscillations in the radial and axial
directions. When the light sources used for computing Riesz
projections are not rotationally symmetric, such as oblique
incident plane waves, the source fields can be expanded into
Fourier modes in the angular direction. Considering Fourier
modes with certain quantum numbers, only the eigenmodes,
eigenfrequencies, and corresponding sensitivities associated with
these quantum numbers are accessed.

We start with computing a Riesz projection to obtain the
eigenfrequency ~ω of the high-Q resonance. Figure 2b shows the
complex frequency plane with the calculated eigenfrequency,
~ω ¼ ð1:17309� 0:00296iÞ ´ 1015 s�1, and the corresponding cir-

cular integration contour ~C for the computation of the Riesz
projection. The center and the radius of the contour are selected
based on a-priori knowledge from Koshelev et al.32. Alternatively,
without a-priori knowledge, a larger integration contour can be
used25. The simulations are performed using eight integration

points on the contour ~C, where a sufficient accuracy with respect
to the integration points is ensured. The computations are based
on a FEM mesh consisting of 306 triangles. To compare the size
of the contour with the distances between the eigenfrequencies

Fig. 2 Numerical investigation of the high-Q resonance of a nanophotonic resonator. a Nanoresonator on a three-layer substrate. The substrate is

infinitely extended in x and y direction. The geometrical parameters p1, p2,…, p5 are the reference values from Koshelev et al.32. b Calculated eigenfrequency

~ω ¼ ð1:17309� 0:00296iÞ ´ 1015 s�1 corresponding to the high-Q resonance. The other red crosses shown are the two eigenfrequencies which are closest

to ~ω. The circular integration contour ~C with the center ε0= 2ζc/(1600 nm) and the radius r0=ε0 × 10−2 is used for computing Riesz projections.

c Electric field intensity j~Ej2 corresponding to the high-Q resonance. d Convergence of the eigenfrequency sensitivities ∂~ω=∂pi with respect to the

polynomial degree d of the FEM ansatz functions. The sensitivities are computed at the parameter reference values given in (a). Relative errors

errreal;i ¼ jReð∂~ω
∂pi

ðdÞ � ∂~ω
∂pi

ðdrefÞÞ=Reð
∂~ω
∂pi

ðdrefÞÞj, where dref= 6. e Relative errors errimag,i for the imaginary parts of the sensitivities; cf. (d).
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within the spectrum of the nanoresonator, the two eigenfrequen-
cies which are closest to ~ω are also shown. We obtain a Q-factor
of Q= 198 for the high-Q resonance, which is in good agreement
with the experimental and numerical results from Koshelev

et al.32. The corresponding electric field intensity j~Ej2 is shown in

Fig. 2c. The eigenmode ~E has the quantum number m= 0 and is
strongly localized in the vicinity of the nanoresonator.

Next, the eigenfrequency sensitivities ∂~ω=∂pi with respect to the
parameters p1, p2,…, p5 sketched in Fig. 2a are computed. In order to
validate the approach, a convergence study for the polynomial degree
d of the FEM ansatz functions is performed. Figure 2d, e shows the
relative errors for the real and imaginary parts, respectively.
Exponential convergence can be observed for all sensitivities with
increasing d. The computed sensitivities for d= 5 are shown in
Table 1. Exemplary source code for the Riesz projection DD method
and simulation results are presented in Binkowski et al.35.

Performance benchmark. The computational effort of the
numerical realization of the Riesz projection DD method is
compared with the computational effort of the finite difference
method. We choose the central difference scheme ∂~ω=∂pi �

~ωðpi þ ϊpiÞ � ~ωðpi � ϊpiÞ
� �

= 2ϊpi
� �

for the comparison. Com-
puting central differences is more computationally expensive than
computing forward or backward differences. However, more

accurate results can be achieved as the error decreases with ðϊpiÞ
2.

To achieve an adequate accuracy, sufficiently small step sizes ϊpi
are selected. For example, for the radius of the nanoresonator, we
choose ϊp1= 0.1 nm. Note that, also for the finite difference
method, we compute the eigenfrequencies by using the contour-
integral-based formula in Eq. (3).

We increase the degrees of freedom of the system shown in
Fig. 2a by deforming the cylindrical nanoresonator to an
ellipsoidal nanoresonator. This breaks the rotational symmetry
yielding a full three-dimensional system with new parameters, the
radius of the nanoresonator in x direction and the radius in y
direction. Figure 3 shows, for the three-dimensional implementa-
tion and for the rotational symmetric implementation, the
normalized computational effort for different numbers of
computed sensitivities. We compute the eigenfrequency ~ω and
then we add the sensitivities, starting with ∂~ω=∂p1, one after the
other. It can be observed that the Riesz projection DD method
requires less computational effort than the finite difference
method, for any number of computed sensitivities, i.e., for all
N ≥ 1. In the case of using finite differences, the computational
effort has a slope of about 200% because for each sensitivity two
additional problems with typically the same dimension as the
unperturbed problem have to be solved. In the three-dimensional
case, a linear regression for the computational effort gives a slope
of about 4% for the Riesz projection DD method. The
computational effort needed for the LU-decomposition is
significant compared to the matrix assembly and to the other
solution steps, so the possibility of exploiting Eq. (5) gives a great
benefit for the Riesz projection DD method. For N= 5, the CPU

time required to solve the linear system of equations, which
includes the LU-decomposition, takes 81% of the accumulated
CPU time. In the rotational symmetric case, the time for solving
the linear system is negligible. However, the trend is the same for
the three-dimensional and for the computationally cheaper
rotational symmetric case: The advantage of using Riesz
projections significantly increases with an increasing number of
computed sensitivities.

Note that contour integral methods are well suited for
parallelization because the scattering problems can be solved in
parallel on the integration contour. However, as total CPU times
are considered for Fig. 3, this is not reflected by the time
measurements.

Q-factor optimization. The Riesz projection DD method is
applied to further optimize the Q-factor of the high-Q resonance
of the nanophotonic resonator from Koshelev et al.32 shown in
Fig. 2a. A rotational symmetric nanoresonator is considered
because simulations show that an ellipsoidal shape does not lead
to a significant increase of the Q-factor. We use a Bayesian
optimization algorithm36 with the incorporation of sensitivity
information. This global optimization algorithm is well suited for
problems with computationally expensive objective functions and
benchmarks show that providing sensitivities can significantly
reduce computational effort37. However, other optimization
approaches could be used as well.

For the optimization, we choose the parameter ranges 435 nm
≤ p1 ≤ 495 nm, 575 nm ≤ p2 ≤ 695 nm, 150 nm ≤ p3 ≤ 550 nm,
100 nm ≤ p4 ≤ 500 nm, and 60∘ ≤ p5 ≤ 90∘. To ensure that the
optimized nanoresonator can also be used as nanoantenna in the
telecommunication wavelength regime, like the original system,
we add the constraint that the optimized eigenfrequency must lie
in the circular contour with the center ω0= 2ϋc/(1600 nm) and
the radius r0= 4 × 1013 s−1. In each optimization step, the Riesz

Table 1 Computed eigenfrequency sensitivities.

i Reð∂~ω=∂piÞ ´ 10
�10 Imð∂~ω=∂piÞ ´ 10

�10

1 −128.750 (s nm)−1 −0.324 (s nm)−1

2 −84.568 (s nm)−1 2.660 (s nm)−1

3 −7.192 (s nm)−1 −1.955 (s nm)−1

4 −0.065 (s nm)−1 0.208 (s nm)−1

5 15.047 (s deg)−1 0.039 (s deg)−1

The sensitivities ∂~ω=∂pi correspond to the high-Q resonance of the nanoresonator shown in Fig.

2a and are computed at the shown parameter reference values.

Fig. 3 Performance of the Riesz projection DD method. The normalized

computational effort over the number N of computed sensitivities ∂~ω=∂pi
with respect to parameters p1, p2,…, pN is shown. The sensitivities are

computed at the reference values shown in Fig. 2a. The computational

effort is the total CPU time normalized to the CPU time spent for

computing the eigenfrequency ~ω, which corresponds to N= 0. The time is

measured with JCMSUITE using four threads on a machine with a 24-core

Intel Xeon Processor running at 3.3 GHz. For all calculations, to ensure high

accuracies, eight integration points at the integration contour ~C depicted in

Fig. 2b are used. The degree of the FEM ansatz functions is fixed with d= 5.

The mesh of the three-dimensional system consists of 4160 prisms and the

mesh of the rotational symmetric system consists of 306 triangles.
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projection DD method is used to compute the eigenfrequency
with a quantum number of m= 0 lying inside the contour and to
calculate the corresponding sensitivities.

A nanoresonator with a Q-factor of Q= 292 is obtained after
61 iterations of the optimizer yielding an increase of about 47.5%
over the original resonator. More iterations yield only a negligible
increase of the Q-factor. The optimized nanoresonator with a
sketch of the electric field intensity of its high-Q resonance and
the values for all underlying parameters are shown in Fig. 4. The
corresponding eigenfrequency is given by ~ωopt ¼ ð1:176897�

0:002015iÞ ´ 1015 s�1. Note that, in the optimization domain, the
average sensitivity of the Q-factor with respect to the ITO layer
thickness p4 is negligible.

Conclusions
An approach for computing eigenfrequency sensitivities of reso-
nance problems was presented. The numerical realization of the
Riesz projection DD method relies on computing scattering
solutions and their sensitivities by solving Maxwell’s equations
with a source term, i.e., solving linear systems of equations. This
enables direct differentiation for the efficient calculation of
eigenfrequency sensitivities. Although sensitivities of resonances
are computed, no eigenproblems have to be solved directly. The
performance of the approach was demonstrated by a comparison
with the finite difference method. The Riesz projection DD
method was incorporated into a gradient-based optimization
algorithm to maximize the Q-factor of a nanophotonic resonator.

The savings in computational effort are particularly significant
for optimization with respect to several parameters, which is a
common task in nanophotonics. Therefore, we expect the approach
to prove especially useful when many sensitivities are to be calcu-
lated. The Riesz projection DD method can not only be applied to
problems in nanophotonics, but to any resonance problem.

Data availability
All relevant data generated or analyzed during this study are included in this published

article. Tabulated data files are included in a corresponding data publication35.

Code availability
Source code for performing the numerical experiments can be found in Binkowski et al.35.
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7 Conclusion

Resonance phenomena are omnipresent in physics and their numerical modeling and
simulation is essential for understanding wave propagation and interference effects. In
nanophotonics, resonances are solutions to the time-harmonic source-free Maxwell’s
equations with loss mechanisms. The corresponding eigenproblems are non-Hermitian
due to losses and they are typically nonlinear due to material dispersion. Computing
the eigenmodes and eigenfrequencies and expanding the physical observable of interest
into a weighted sum of eigenmodes is an instructive approach to obtain a deeper under-
standing of the physical properties of the underlying nanostructure. This understanding
is essential for the design and optimization of nanophotonic devices.
In this thesis, we considered resonances arising in open material systems. In Chap-

ter 2, we introduced a resonance expansion approach based on Riesz projections. The
approach relies on spectral projection by contour integration where Maxwell’s equations
with a source term are solved for complex-valued frequencies lying on the integration con-
tours. This allows for the resonance-based-investigation of arbitrary material systems
since the material models can be directly evaluated for the given frequencies, which
means that no linearization of the nonlinear eigenproblems is required. In Chapter 3,
we demonstrated this property of the Riesz projection expansion, where a nonlocal ma-
terial model is considered for the study of a nanowire with a diameter of only a few
nanometers. In Chapter 4, we extended the Riesz projection expansion approach to
optical far-field quantities, such as the energy flux density in the far field of a nanopho-
tonic device. In Chapter 5, motivated by Riesz projection expansions, we developed a
Riesz-projection-based method to compute physically relevant eigenfrequencies. Physi-
cally relevant means that the eigenfrequencies are relevant with respect to the resonance
expansion of the physical observable of interest. The proposed method prioritizes such
eigenfrequencies when multiple eigenfrequencies lie within the integration contour. In
Chapter 6, based on this approach, we introduced a method to compute eigenfrequency
sensitivities using Riesz projections. This method combines contour integration and di-
rect differentiation for numerical implementations of Maxwell’s equations enabling an
efficient numerical realization. We used the proposed method to optimize an important
figure of merit of a nanophotonic resonator, the Q-factor of a specific resonance, with
respect to several shape parameters of the resonator.
We applied the Riesz projection expansion approaches developed in this thesis also in

other works, for example, for the study of strong coupling in plasmonic resonators [100]
and for the study of the Purcell factor of coupled eigenmodes [71]. In the eigensolver
benchmark in Ref. [30], we compared the Riesz-projection-based method proposed in
Chapter 5 with other methods for calculating eigenfrequencies and eigenmodes. The
benchmark was performed in collaboration with several research groups from the field
of computational nanophotonics. The results obtained using Riesz projections are in
agreement with the results of the other methods. Recently, in Ref. [72], we exploited

50



Riesz projections to extend the resonance expansion approach given by Eq. (2.2) to
quadratic and far-field quantities. This extension shares important properties with the
previously proposed Riesz projection expansion given by Eq. (4.1), but is based on the
direct computation of eigenmodes.
Riesz projections can be used to compute resonance expansions in a very elegant way.

Any physical observable that can be derived from the electric field can be expanded in
any material system, and the remainder of the expansion can be calculated by a sin-
gle additional contour integral. The strength of the Riesz-projection-based approaches
proposed in this thesis lies, in particular, in the possibility of combining resonance ex-
pansion and calculation of physically relevant eigenfrequencies and their sensitivities.
This combination possibility is already demonstrated in our published software package
RPExpand [101]. In both cases, the contour integrals are based on scattering problems
in the form of Maxwell’s equations with a physical source term, which can be exploited
for an efficient numerical realization. This relation to physics is also the main difference
to other contour integral methods for solving eigenproblems.
Further research on Riesz projection methods for nanophotonic problems is already

being carried out. For example, in order to show the advantages and disadvantages of
different resonance expansion approaches, a benchmark for resonance expansion is being
developed. We also expect that approaches based on Riesz projections can be very
useful in other areas of physics. It is planned to apply Riesz projections to investigate
eigenmodes of quantum mechanical systems.
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8 Appendix

In the appendix of this thesis, the three further individual works [69–71] of the doctoral
candidate are presented, which are closely related to the thesis.
In Ref. [69], we review a linearization approach for nonlinear eigenproblems in the

field of nanophotonics. In Ref. [70], we apply this approach to compute eigenmodes and
eigenfrequencies of a system described by a quantum model combined with classical elec-
tromagnetic wave simulations. In Ref. [71], we use the linearization approach together
with the Riesz projection expansion approaches for the investigation of the influence
of interfering resonances on the Purcell enhancement of a dipole emitter placed in a
nanodisk.

8.1 Linearization of resonance problems in dispersive

material systems

For the investigation of resonance phenomena in nanophotonics, the linearization of
the nonlinear eigenproblems given by Eq. (2.3) with an application of an eigensolver
to the resulting linear eigenproblems is a common approach [30–32, 38]. The Arnoldi
method [39] is often used for solving the linear eigenproblems. The nonlinearity of the
eigenproblems is caused by the material dispersion and the corresponding models are
often based on rational functions, as in the case of Drude-Lorentz models or rational fits
to measured material data [36].

In Ref. [69], we report on a linearization approach based on modeling the permit-
tivity by rational functions. The linearization introduces auxiliary fields increasing the
dimension of the underlying problem. The computational effort for solving the linear
eigenproblem increases with the number of introduced auxiliary fields, which depends
on the order and number of the poles of the rational function.
In the following, Ref. [69] is reprinted, which is an open access article distributed under

the terms of the Creative Commons CC BY license; [Felix Binkowski, Lin Zschiedrich,
and Sven Burger. An auxiliary field approach for computing optical resonances in dis-
persive media. J. Eur. Opt. Soc.-Rapid Publ. 15, 3 (2019). doi: 10.1186/s41476-019-
0098-z.]
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Abstract

We report on an auxiliary field approach for solving nonlinear eigenvalue problems occurring in nano-optical systems

with material dispersion. The material dispersion can be described by a rational function for the frequency-dependent

permittivity, e.g., by a Drude-Lorentz model or a rational function fit to measured material data. The approach is

applied to compute plasmonic resonances of a metallic grating.
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Introduction
Detailed knowledge on the resonant states of nano-optical

systems is essential for understanding the physical prop-

erties of the systems and for designing related photonic

devices [1–3]. With numerical approaches it is possible to

compute the resonant states, which are typically solutions

to nonlinear eigenvalue problems (NLEVPs) arising from

Maxwell’s equations. The material dispersion described

by the permittivity causes the nonlinearity of the eigen-

problems. A multitude of numerical solution techniques

are used for solving the NLEVPs, such as lineariza-

tion, iterative projection methods and contour integral

methods [4–6].

In nano-optics, linearization with physically derived

auxiliary fields is a common approach [7–12]. In this

work, we report on an auxiliary field approach based

on modeling the permittivity with rational functions.

We implement the approach using an iterative projec-

tion method. Motivated by scatterometry applications,

the numerical realization is applied to compute resonant

states of a metallic line grating.

Auxiliary field approach for dispersive
nano-optical systems
In the steady-state regime, the resonant states of nano-

optical systems satisfy the time-harmonic Maxwell’s

equations in a source-free medium, given in the second-

order form by

*Correspondence: burger@zib.de
1Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
2JCMwave GmbH, Bolivarallee 22, 14050 Berlin, Germany

∇ × μ(r,ω)−1
∇ × E(r,ω) − ω2ε(r,ω)E(r,ω) = 0, (1)

where E(r,ω) is the electric field. The permittivity ten-

sor ε(r,ω), depending on the complex angular frequency

ω and the position r, describes the material dispersion

and the spatial distribution of materials. For optical fre-

quencies, the permeability tensor μ(r,ω) typically equals

the vacuum permeability μ0. Equation 1 becomes a non-

Hermitian problem in the presence of open boundary

conditions or lossy materials.

To obtain a numerical solution to Eq. (1), we apply

the finite element method (FEM) [13, 14]. This dis-

cretization technique leads to an algebraic NLEVP of

the form

Au = ω2B(ω)u, (2)

where A,B(ω) ∈ C
n×n are the system matrices, ω ∈ C is

an eigenvalue and u ∈ C
n is the corresponding eigen-

vector. The problem is nonlinear through the eigenvalue-

dependence of the mass matrix B(ω), which is based on

ε(r,ω). If the permittivity model ε(r,ω) is a rational func-

tion of the frequency with poles of order one, e.g., a Drude

model [15] or a rational fit of measured material data, the

matrix B(ω) has the form

B(ω) = B0 +
1

ω − ω1
B1 + · · · +

1

ω − ωN
BN , (3)

where B0, . . . ,BN ∈ C
n×n are matrices resulting from

the partial fraction decomposition and ω1, . . . ,ωN ∈ C

are the poles of the rational function. Note that physical

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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dispersion models have to satisfy Kramers-Kronig rela-

tions to ensure causality.

To compute eigenvalues ω and corresponding eigenvec-

tors u, an implementation of the shift-and-invert Arnoldi

method is applied [16]. For this, the shifted eigenvalue

ω̃ = ω − σ , the shifted poles ω̃i = ωi − σ , i = 1, . . . ,N ,

and the auxiliary fields

u0 =
ω

σ
u, ui =

ω

ω − ωi
u, i = 1, . . . ,N ,

are defined, where σ is the chosen shift. As the matrices

B1, . . . ,BN have only non-zero entries for degrees of free-

dom of the discretization corresponding to the dispersive

object, the auxiliary fields u1, . . . ,uN can be restricted to

this subset. However, for the sake of a simpler notation,

we define them on the entire domain. Using the auxiliary

fields with Eq. (3) to reformulate Eq. (2) yields

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A −σ 2B0 −σB1 −σB2 . . . −σBN

−σ I σ I 0 0 . . . 0

σ I 0 ω̃1I 0 . . . 0

σ I 0 0
. . .

. . .
...

...
...

...
. . . ω̃N−1I 0

σ I 0 0 . . . 0 ω̃N I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u

u0
u1
u2
...

uN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= ω̃

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 σB0 B1 B2 . . . BN

I 0 0 0 . . . 0

−I 0 I 0 . . . 0

−I 0 0
. . .

. . .
...

...
...

...
. . . I 0

−I 0 0 . . . 0 I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u

u0
u1
u2
...

uN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

where I ∈ R
n×n is the identity matrix. This is a linear

eigenvalue problem of the form

Ãũ = ω̃B̃ũ, (5)

where Ã, B̃ are augmented system matrices and ũ is an

augmented field containing the original eigenvector u

and the auxiliary fields u0, . . . ,uN . The linear eigenvalue

problem in Eq. (5) is solved by applying the Arnoldi

method to

Ã
−1

B̃ũ =
1

ω̃
ũ (6)

assuming that ũ is suitably scaled. The Arnoldi iteration

typically converges to the largest eigenvalue, i.e., to the

smallest shifted eigenvalue ω̃ = ω − σ . Thus, the eigen-

value ω of the NLEVP in Eq. (2) which is closest to the

shift σ is obtained. Note that the auxiliary field approach

increases the dimension of the eigenvalue problem with

the number of poles of the rational function.

Remark For the computation of the Krylov subspace

Km = span
{

ṽ, Ã
−1

B̃ṽ, . . . , (Ã
−1

B̃)m−1ṽ
}

within the Arnoldi iteration for Eq. (6), the linear system

Ãũ = B̃ṽ is considered for the given input vector

B̃ṽ =

[

f T , f T0 , f T1 , . . . , f TN

]T
,

where ṽ ∈ C
(N+2)n is an initial vector and f , f0, . . . , fN ∈

C
n. The first n rows in Eq. (4) with the initial vector ṽ for

the right-hand side lead to

Au − σ 2B0u0 − σB1u1 − · · · − σBNuN = ω̃f

and substitution of the auxiliary fields

u0 =
ω̃

σ
f0 + u,

ui =
ω̃

ω̃i
fi −

σ

ω̃i
u, i = 1 . . . ,N , (7)

yields

Âu =

[

A − σ 2B0 +
σ 2

ω̃1
B1 + · · · +

σ 2

ω̃N
BN

]

u

= ω̃f + ω̃σ

[

B0 f0 +
1

ω̃1
B1f1 + · · · +

1

ω̃N
BN fN

]

= ω̃f̂ .

Instead of solving the linear system Ãũ = B̃ṽ to generate

the Krylov subspace Km, the system Âu = ω̃f̂ is solved

yielding u and Eq. (7) is used to achieve u0, . . . ,uN .

This approach has the advantage that the matrix Â

is equal to the matrix which is considered for solving

Maxwell’s equations in presence of a source. Such a scat-

tering problem has the form
[

A − ω2B(ω)
]

usc = s(ω),

where s(ω) is a source term. Setting ω = σ yields Â =
[

A − σ 2B(σ )
]

. Thus, the implementation of a scatter-

ing solver can also be used in the framework of solving

eigenproblems.

Application tometallic grating
The presented approach is applied to a line grating con-

sisting of gold struts surrounded by air. We revisit an

experimentally realized setup supporting plasmonic res-

onances [17]. This system has been recently numerically

investigated [18]. The geometry is sketched in Fig. 1. Grat-

ing structures are of interest in, e.g., scatterometry. It has

been proposed to employ the resonant states of gratings

for increasing the sensitivity in measurements of their

spatial dimensions [19].

We apply the auxiliary field approach using the FEM

solver JCMsuite to compute the resonant state which

corresponds to an absorption peak near the wavelength

τ = 650 nm [18]. For the relative permittivity of the gold

grating, a one-pole Drude model
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Fig. 1 Sketch of a line grating consisting of gold surrounded by air. The structure is periodic in x direction and infinitely extended in y direction. The

period is a = 482.5 nm, the rod width is w = 347.5 nm and the rod height is h = 130 nm

εr(ω) = 1 −
ω2
p

ω2 + iυω

is considered, where ωp = 1.26e+16 s−1 is the plasma

frequency and υ = 1.41e+14 s−1 is the damping coeffi-

cient. The permittivity is then given by ε(ω) = ε0εr(ω),

where ε0 is the vacuum permittivity. The chosen shift is

σ = 2φc/(650 nm), where c is the speed of light. Dif-

ferent finite element degrees p = 1, . . . , 6 and a fixed

mesh containing about 1e+03 triangles are applied. Cor-

ners are a known issue considering systems containing

metals. To deal with the occurring field singularities at

the corners, refinements with a minimum edge length of

about 0.016 nm are used. Bloch boundary conditions with

a Bloch vector of [2φ/(5a), 0, 0] enforce the periodicity in

x direction. To realize the open boundary conditions in z

direction, perfectly matched layers (PMLs) are used. Con-

vergence of the PML method is ensured by applying an

adaptive numerical realization of the PML method [13].

The relative error of the eigenvalue ω is shown in Fig. 2,

where the reference solution ωref is the eigenvalue com-

puted with p = 6. Convergence to the reference solution

is observed. For the finite element degree p = 5, the

eigenvalue ω = 2φc/(649.1397576 + 11.0601049i nm ±

(6.2e−06 + 1.5e−06i nm)) is obtained.

In order to validate the results of the auxiliary field

approach, eigenvalues are calculated using a fixed-point

iteration. The same shift σ = 2φc/(650 nm) as before

is used to initialize the mass matrix B(σ ). Equation 2

becomes linear and is solved with the shift-and-invert

Arnoldi method. The resulting eigenvalue ωiter is then

used to update B(ωiter) and to repeat the procedure until

ωiter does not change up to a chosen tolerance. In Table 1,

the relative difference between the results from the aux-

iliary field approach, denoted by ω, and the results from

the fixed-point iteration, denoted by ωiter, are shown. An

abort condition for the fixed-point iteration with a toler-

ance of 1e−08 is chosen for the real and imaginary parts

of ωiter. This leads to about 10 iterations. For all finite ele-

ment degrees p = 1, . . . , 5, matching results for the two

1 2 3 4 5

10
-8

10
-6

10
-4

10
-2

10
0

Fig. 2 Convergence of the eigenvalue. Relative error of the eigenvalue computed with the auxiliary field approach with respect to the numerical

resolution. The reference solution ωref is computed with the finite element degree p = 6
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Table 1 Comparison of eigenvalues computed with the auxiliary

field approach and with the fixed-point iteration, denoted by ω

and ωiter , respectively

p
∣

∣

∣

Re(ω−ωiter)
Re(ωiter)

∣

∣

∣

∣

∣

∣

Im(ω−ωiter)
Im(ωiter)

∣

∣

∣

1 6.6e−13 1.2e−10

2 1.0e−12 4.1e−10

3 9.9e−13 4.0e−10

4 9.4e−13 4.1e−10

5 9.3e−13 4.0e−10

approaches with a relative difference smaller than 4.1e−10

are obtained.

Conclusions
We have reported on an approach for computing eigenso-

lutions to Maxwell’s equations in dispersive media. Auxil-

iary fields are used to linearize the corresponding NLEVP.

The resulting linear eigenvalue problem is then solved

with the shift-and-invert Arnoldi method. The approach

has been applied to a metallic line grating and the results

for the eigenvalues have been validated by an implemen-

tation of a fixed-point iteration.
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8.2 Combining quantum and classical models for

emitter-resonator systems

When light is absorbed at metal surfaces, individual electrons can be released from the
surfaces. Resonance effects can significantly enhance this quantum effect due to the
resulting highly localized electromagnetic field energies at the surfaces. The so-called
hot electrons can be transferred from the surfaces to adjacent semiconductors and then
be used in, e.g., photocatalytic processes [7, 102–104].
In Ref. [70], we investigate a nanoresonator on a metal surface and study the generation

of hot electrons due to a resonance effect resulting from an excitation of a resonance by a
dipole emitter. We show how to combine a quantum model with classical electromagnetic
wave simulations to compute the hot electron generation rate. For the classical wave
simulations, the scattered electric field at the metal surface is computed by solving
Maxwell’s equation given by Eq. (2.1). It can be observed that the generation rate is
overestimated when the dipole emitter is very close to the metal surface. To account for
this, we correct the underlying material model, given by a Drude-Lorentz model, with
respect to the surface response caused by the generation of hot electrons. The results are
explained by analyzing the resonances of the nanoresonator, where the eigenmodes and
eigenfrequencies are computed by the linearization approach presented in Section 8.1.
In the following, Ref. [70] is reprinted with permission from [Felix Binkowski, Tong

Wu, Philippe Lalanne, Sven Burger, and Alexander O. Govorov. Hot electron gen-
eration through near-field excitation of plasmonic nanoresonators. ACS Photonics 8,
1243 (2021). doi: 10.1021/acsphotonics.1c00231.] Copyright 2021 American Chemical
Society. ACS Articles on Request link.
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ABSTRACT: We theoretically study hot electron generation
through the emission of a dipole source coupled to a nano-
resonator on a metal surface. In our hybrid approach, we solve the
time-harmonic Maxwell’s equations numerically and apply a
quantum model to predict the efficiency of hot electron generation.
Strongly confined electromagnetic fields and the strong enhance-
ment of hot electron generation at the metal surface are predicted
and are further interpreted with the theory of quasinormal modes.
In the investigated nanoresonator setup, both the emitting source
and the acceptor resonator are localized in the same volume, and
this configuration looks promising to achieve high efficiencies of
hot electron generation. By comparing with the efficiency
calculated in the absence of the plasmonic nanoresonator, that is, the dipole source is located near a flat, unstructured metal
surface, we show that the effective excitation of the modes of the nanoresonator boosts the generation efficiency of energetic charge
carriers. The proposed scheme can be used in tip-based spectroscopies and other optoelectronic applications.

KEYWORDS: hot electron generation, localized light source, near-field excitation, plasmonic nanoresonators

L ight−matter interactions in metal nanostructures can be
strongly enhanced by plasmonic resonance effects.1,2 Hot

electron generation, which attracted significant attention in
recent years,3−10 is one important effect resulting from the
absorption of plasmons by metal surfaces. With this effect,
visible light can be harvested and its energy can be transferred
to an adjacent semiconductor, where the energy can then be
used for photocatalytic processes.11 The impact of morphology
and materials on local field enhancement and hot electron
generation is typically investigated in setups with illumination
from the far field, for example, solar illumination and other
macroscopic illumination settings.12−14 However, there are
also various types of localized light sources accessible, such as
plasmonic tips, single molecules, quantum wells, or quantum
dots,15−17 which have so far not been considered for the
generation of excited charge carriers.
The efficiency of hot electron generation in metal

nanostructures depends on the magnitude of the electric fields
in the vicinity of the nanostructures.5 Nanofabrication
technologies allow fabrication of plasmonic nanoresonators
of various shape and characteristic size well below 100 nm,18

which enables light confinements at the nanometre scale: The
plasmonic resonances of the deep-subwavelength resonators
can be efficiently excited by localized emitters resulting in
highly localized electromagnetic fields at the metal surfa-
ces.19,20 For the design and optimization of nanophotonic
devices based on emitter-resonator excitations, modal

approaches are a common theoretical tool.21 The localized
surface plasmon resonances of the systems, which are
quasinormal modes (QNMs),21,22 are electromagnetic field
solutions to the time-harmonic source-free Maxwell’s equa-
tions. The corresponding resonance problems are solved
numerically,23 and the solutions allow to obtain insights into
the physical properties of the nanophotonic devices.
In this work, we investigate hot electron generation with a

localized emitter placed in the near field of a metal
nanostructure. In particular, we numerically study a circular
nanogroove resonator on a silver surface with a characteristic
size of ∼40 nm and compare the efficiency of hot electron
generation in the presence and absence of the nanoresonator.
We compute and analyze the hot electron generation with a
quantum model assisted by full-wave simulations and further
investigate the impact of geometrical parameters. We numeri-
cally demonstrate that the excited localized resonance of the
nanoresonator leads to an enhancement of the hot electron
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generation efficiency of more than 1 order of magnitude
compared to the flat surface.

■ EXCITATION OF PLASMONIC RESONANCES WITH
LOCALIZED EMITTERS

Theoretical Background and Numerical Methods. In
nano-optics, in the steady-state regime, the electric fields

ω ∈E r( , )0
3 resulting from a source field are solutions to the

time-harmonic Maxwell’s equations in second-order form,

μ ω ω ω ω ω∇ × ∇ × − ϵ =− iE r r E r J r( , ) ( , ) ( , ) ( )1
0 0

2
0 0 0

(1)

where ω ∈0  is the angular frequency, r is the spatial

position, and ∈J r( ) 3 is the electric current density
corresponding to the source. The source field for a localized
source can be modeled by a dipole source J(r) = jδ(r − r′),
where δ(r − r′) is the delta distribution, r′ is the position of
the emitter, and j is the dipole amplitude vector. In the optical
regime, the permeability tensor μ typically equals the vacuum
permeability μ0. The permittivity tensor ϵ(r, ω0) describes the
spatial distribution of material and the material dispersion.
We investigate a dipole emitter placed close to a nano-

resonator. The nanoresonator is a circular slit on a silver
surface with a depth and width of 10 nm. The structure has
corner roundings with a radius of 2 nm. Figure 1 shows a
sketch of the geometry of the resonant system. The dipole
emitter is polarized parallel to the z direction and located on
axis above the central nanocylinder at a separation distance zde
of the metal surface. For clearly separating the effect of
localized resonances supported by the circular nanogroove
resonator, we also investigate a second setup: A localized
source is placed at zde above a flat, unstructured silver surface.
In both cases, the permittivity of the silver material is described
by a generalized Drude−Lorentz model resulting from a
rational fit24,25 to experimental data,26 see Table 1. For the
investigations, we choose a spectral region in the optical
regime, 200 nm ≤ λ0 ≤ 700 nm, with the wavelength λ0 = 2πc/
ω0.
To numerically analyze the dipole emitter interacting with

the nanoresonator and with the flat surface, we use the finite
element method. Scattering and resonance problems are solved
by applying the solver JCMsuite.27 The solver employs a
subtraction field approach for localized sources, adaptive

meshing, higher order polynomial ansatz functions, and allows
to exploit the rotational symmetry of the geometry.28

Quasinormal Mode Analysis. When a localized emitter is
placed close to a nanostructure, then the optical properties of
the system are determined by its underlying resonances.
Localized surface plasmon resonances, which are QNMs of the
system, are one important resonance phenomena. Figure 1
contains a sketch of a QNM of the nanoresonator which is
investigated in this study. QNMs are solutions to eq 1 with
outgoing wave conditions and without a source field, that is,
J(r) = 0. We denote the electric and magnetic field
distributions of a QNM by Ẽ(r) and H̃(r), respectively. The
QNMs are characterized by complex eigenfrequencies ω̃ ∈ 
with negative imaginary parts. The quality factor Q of a
resonance,

ω

ω
=

̃
− ̃

Q
Re( )

2Im( )

describes its spectral confinement and quantifies the relation
between the stored and the dissipated electromagnetic field
energy. In the following section, we investigate how hot
electron generation can be increased by the excitation of
localized resonances. The physical intuition behind this effect
is the following: When a localized source radiating at the
frequency ω0 efficiently couples to a localized resonance, that
is, it is spectrally (ω0 ≈ Re(ω̃)) and spatially matched with the
resonance, then a large electric field E(ω0, r) around the
nanoresonator can be induced by the source. At the resonance
frequency ω0 = Re(ω̃), the induced field intensity |E(ω0, r)|

2 is
proportional to Q2, which can significantly enhance the hot
electron generation. Note that |E(ω0, r)|

2 is also proportional

Figure 1. Circular nanogroove resonator with radius r on a silver surface interacting with a localized emitter placed at the dipole-to-surface distance
zde. The sketched electric field intensity |Ẽ|2 corresponds to an excited localized surface plasmon resonance. Placing a dipole emitter close to the
metal surface leads to hot electron generation. The coupling of the emitter with the resonance yields high electric field values localized at the
nanogroove, which enhances the efficiency of hot electron generation.

Table 1. Permittivity Model for Silvera

k Ωk (eV) σk (eV)

1 3.9173 − 0.06084i 0.09267 + 0.01042i

2 3.988 − 0.04605i −0.0015342 − 0.062233i

3 4.0746 − 0.63141i 1.4911 + 0.40655i

4 4.6198 − 2.8279i 4.2843 + 4.2181i
aPoles Ωk and amplitudes σk for the generalized Drude−Lorentz
model24 ϵmetal,bulk(ω0) = ϵ0(ϵ∞ − ωp

2/(ω0
2 + iγDω0)) + ϵ0∑k=1

4 [iσk/(ω0

− Ωk) + iσk*/(ω0 + Ωk*)], where ϵ0 is the vacuum permittivity, ϵ∞ =
0.77259, γD = 0.02228 eV, and ωp = 9.1423 eV.
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to (Re(1/Ṽ))2, where Ṽ is the mode volume29 describing the
spatial confinement of the electromagnetic field of a resonance.
In the optical regime, the circular nanogroove resonator

sketched in Figure 1 supports one dominant localized
resonance. The resonance wavelength λ̃ = Re(2πc/ω̃)
decreases with an increasing circular slit radius r, see Figure
2a. Figure 2b shows Q, depending on r, where Q = 120 can be

observed for r = 10 nm. Note that, for smaller radii, due to the
decreasing radiation loss, the quality factor would increase
further. However, we restrict the investigations to r ≥ 10 nm.
Figure 2c shows the electric field intensity of the dominant
resonance for r = 10 nm. The resonance is strongly localized at
the circular slit and is characterized by high electric field values
inside and close to the metal. Figure 2d shows the electric field
intensity of the dominant resonance for r = 30 nm. It can be
observed that, in comparison to the resonance for r = 10 nm,
the electric field intensity becomes smaller at the metal surface.
The ratio between stored and dissipated electromagnetic field

energy decreases with an increasing radius. For the following
investigations, we consider the circular nanogroove resonator
shown in Figure 2c, which has a radius of r = 10 nm and a
quality factor of Q = 120.

Dipole Emission and Absorption. To quantify the
interaction of the circular nanogroove resonator with a dipole
emitter close to the resonator, we investigate the total power
emitted by the dipole, which is also called dipole emission. The
dipole emission can be computed by

ω ω= − * ′ ·p E r j( )
1

2
Re( ( , ) )

de 0 0

where E*(r, ω0) is the complex conjugate of the electric field,
r′ is the position of the emitter, and j is the dipole amplitude
vector. The electric field E(r, ω0) is computed by solving eq 1
with a dipole source.
Based on the modal results from the previous subsection, we

place the dipole emitter at zde = 20 nm, which is in a spatial
region of high electric field intensity of the dominant
resonance shown in Figure 2c. In this way, the localized
resonance of the circular nanogroove resonator has a
significant influence on the emission properties of the dipole
emitter. Figure 3a shows the dipole emission pde(λ0). In the

case of the nanoresonator, the spectrum is characterized by
two significant maxima, which are based on different resonance
effects: The dipole emitter couples to the dominant localized
resonance with the resonance wavelength λ̃ = 435 nm and it
couples also to a continuum of surface plasmons, which are
propagating on the metal surface. As expected, the propagating
surface plasmons occur not only in the presence of the
nanoresonator, but also in the case of the flat surface. Their
high density of states give rise to a peak in the spectrum
between λ0 = 300 nm and λ0 = 400 nm, as indicated in Figure
3a, where the coupling of the dipole emitter to the propagating
surface plasmons is stronger in absence of the nanoresonator.
It can be expected that, for the investigated systems, all

energy that is not radiated into the upper hemisphere is

Figure 2. Simulations of the circular nanogroove resonator supporting
one dominant localized resonance in the spectral region of visible
light. The associated QNM and its eigenfrequency ω̃ depend on the
radius r of the nanoresonator. The permittivity model ϵmetal,bulk given
in Table 1 is used. (a, b) Resonance wavelength λ̃ = Re(2πc/ω̃) and
quality factor Q of the dominant QNM, respectively. (c) Log-plot
(a.u.) of the electric field intensity |Ẽ|2 corresponding to the dominant
QNM of the nanoresonator with r = 10 nm. The QNM is

normalized29 such that ∫ μ̃ · ̃ − ̃ · ̃ =ω

ωΩ

∂ ϵ
∂

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑ VE E H H d 1
0 , that is, the

map allows a direct estimation and visual comparison of the
interaction strength of the mode with point-like unpolarized dipoles.
The corresponding eigenfrequency is ω̃ = (4.330 − 0.018i) × 1015 s−1

and the resonance wavelength is λ̃ = 435 nm. (d) Log-plot of the
electric field intensity of the normalized QNM corresponding to the
circular nanogroove resonator with r = 30 nm.

Figure 3. Simulations of dipole emission and normalized absorption
for a localized source placed at the dipole-to-surface distance zde = 20
nm. Investigation for the circular nanogroove resonator with r = 10
nm and comparison to a flat surface. The permittivity model ϵmetal,bulk

given in Table 1 is used. (a) Dipole emission pde. (b) Normalized
absorption in metal pabs/pde.
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absorbed by the metal. Therefore, the total absorbed energy
can be computed using the expression

ω ω ω= −p p p( ) ( ) ( )
abs 0 de 0 rad 0

The dipole emission radiated into the upper hemisphere,
prad(ω0), is computed by a near-field to far-field transformation
and an integration of the Poynting vector over the upper
hemisphere. Figure 3b shows the absorption pabs(λ0)
normalized by the dipole emission pde(λ0) for zde = 20 nm.
It can be observed that, close to the wavelength of the localized
resonance, most of the energy is absorbed. As the presence of
the nanoresonator increases the electromagnetic field energy in
the metal, the system with the nanoresonator leads to a higher
absorption efficiency than the system with the flat surface.
To summarize, the simulations in this subsection show that a

localized source can efficiently excite localized resonances
supported by a nanoresonator, as well as propagating surface
plasmons on flat metal surfaces. In the following section, it is
shown that especially excited localized resonances can have a
significant impact on the rate at which hot electrons can be
generated in our model system.

■ HOT ELECTRON GENERATION

Theoretical Background. Considering quantum surface
effects in plasmonics, one should start from an elegant theory
by Feibelman developed to describe a surface plasmon
dispersion in metals.30,31 The so-called Feibelman’s d-
parameters characterize the dispersion and damping of the
surface plasmon mode beyond the classical electromagnetic
theory. Furthermore, it was discovered that the plasmon
excitations in small nanoparticles experience an additional
damping mechanism, the so-called surface-scattering decay.32

In this quantum mechanism, collective plasmon excitations
turn into hot electrons due to scattering at the surfaces.33−38 A
full kinetic picture of the plasmon excitation in a nanostructure
involves both low-energy “Drude” electrons forming the
coherent plasmon oscillation and the energetic (hot) electrons
generated through the surface-assisted Kreibig’s mechanism.39

The low-energy excitations, regarded above as Drude electrons,
can also be derived directly from the quasi-classical theory
based on the Boltzmann equation.40,41 Another related work,
which should be mentioned here, is the theory of hot electron
photocurrents generated at metal−semiconductor interfa-
ces.42−45 In our approach, we combine some of the quantum
formalisms mentioned above33,38,39,45 with the classical
formalism of computing the electromagnetic fields at the
surfaces by solving Maxwell’s equations. The theoretical
treatment below, which incorporates the surface-assisted
generation of hot electrons, is very convenient since it allows
to investigate nanostructures with arbitrarily complex shapes,
in which hot-spot and shape effects determine the formation of
plasmonic modes. We note that our formalism does not
include a bulk mechanism of hot electron generation due to
the electron−phonon scattering.46 However, such a phonon-
assisted channel should not play a dominant role in relatively
small nanostructures where plasmonic mode sizes are less than
40 nm.46 In our case, the groove size of the nanostructure is
just 10 nm, and we expect that the leading mechanism is the
surface-assisted hot electron generation. Another argument for
the importance of the surface-generated hot electrons is that
those carriers are created at the surface and, therefore, can be

transferred to surface acceptor states for photochemistry or for
other detection methods.

Quantum Efficiency of Hot Electron Generation. The
rate of energy dissipation based on the generation of hot
electrons at a surface is given by47

∫ω

π ω

ω=
ℏ ℏ

p
e E

SE r( )
1

2

1

( )
( , ) d

S
he 0 2

2
F
2

0
2 n 0

2

(2)

where e is the elementary charge, EF is the Fermi energy, and ℏ
is the reduced Planck constant. The normal component of the
electric field En(r, ω0) is integrated over the surface S. For a
detailed derivation of eq 2, the reader is referred to ref 47.
The quantum dissipation phe(ω0) is based on optically

induced quantum transitions of electrons near to the surface:
The energy of photons can be transferred to the electrons
because of breaking of linear momentum conservation. This
surface scattering effect can be accounted for by a
phenomenological approach for metal nanostructures.34,37,38

An additional damping mechanism with the quantum decay
parameter γs is incorporated in the material model,

ω ω

ω

ω ω γ

ω

ω ω γ γ
ϵ = ϵ + ϵ

+
− ϵ

+ +i i
( ) ( )

( ) ( ( ))
0 metal,bulk 0 0

p
2

0 0 D
0

p
2

0 0 D s

(3)

where ϵmetal,bulk(ω0) is the permittivity model for the metal bulk
material, and ωp and γD are the plasma frequency and the
damping constant from the Drude model, respectively, see
Table 1. The quantum decay parameter γs describes the
broadening due to the scattering of electrons at the surface. For
the calculation of γs, we consider the total absorption power in

a metal nanostructure, given by pabs = ∫ωϵ ω

Im( ( ))
V0 2

0 E·E*

dV, where ϵ(ω0) is the permittivity model from eq 3. It is
assumed that ω0

2 ≫ (γD + γs)
2, which holds for typical cases in

nanophotonics. Applying the resulting simplification

ω ωϵ ≈ ϵ + ϵ
ω γ

ω
Im( ( )) Im( ( ))0 metal,bulk 0 0

p
2
s

0
3 and splitting the

absorption power pabs into contributions corresponding to
bulk and surface effects yield, in particular, the surface-

scattering term ∫= ϵ · *ω γ

ω

ω

p VE E d
Vs 0 2

p
2
s

0
3

0 .37,38 This term can

be also computed using eq 2. The equation phe = ps can be
transformed and allows to compute the quantum decay
parameter γs. A corresponding numerical iterative approach
is given by38

∫

∫
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where γs,0 = 0, vF is the Fermi velocity, and the electric fields
are computed by solving eq 1 numerically, and subsequently,
they are integrated over the surface S and the volume V of the
considered nanostructure. For the computation of the electric
fields within the iteration, the material model given by eq 3 is
used. Note that, for γs,0 = 0, we obtain ϵ(ω0) = ϵmetal,bulk(ω0) as
used for the calculations for the optical problem in the
previous section. We further note that a formalism for γs,n can
also be derived without the assumption ω0

2 ≫ (γD + γs)
2.38

The consideration of the quantum decay parameter γs,n is
equivalent of solving a self-consistent quantum-classical
formalism which fully accounts for the change of the surface
response caused by the generation of hot electrons. With this
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approach, the total power emitted by a dipole can be expressed
as

ω ω ω ω= + +p p p p( ) ( ) ( ) ( )
de 0 abs,bulk 0 he 0 rad 0

where pabs,bulk(ω0) is the absorption in the metal bulk. We
define the quantum efficiency of hot electron generation as the
ratio ηhe(ω0) = phe(ω0)/pde(ω0). This parameter describes the
fraction of the dipole energy converted into hot electrons. The
efficiency of the absorption in the metal bulk and the radiation
efficiency are defined as ηabs,bulk(ω0) = pabs,bulk(ω0)/pde(ω0) and
ηrad(ω0) = prad(ω0)/pde(ω0), respectively.
To investigate the effect of hot electron generation for the

circular nanogroove resonator, we choose, as in the previous
section, the dipole-to-surface distance zde = 20 nm and solve eq
1 with the introduced permittivity model in eq 3. The Fermi
energy and the Fermi velocity of silver are given by EF = 5.48
eV and vF = 1.39 × 106 m/s,48 respectively. The quantum
decay parameter γs,n is obtained by the iteration in eq 4, where
the abort condition for the iteration is |γs,n − γs,n−1|/γs,n < 10−2.
For all simulations, with an initial value of γs,0 = 0, this
convergence condition can be achieved within a maximum of
four iterations. The electric fields E(r, ω0) resulting from this
procedure are used to compute pde(ω0), phe(ω0), and prad(ω0).
To obtain the absorption in the metal bulk, we use the
expression pabs,bulk(ω0) = pde(ω0) − phe(ω0) − prad(ω0). Note
that the quantum decay parameter γs,n and, therefore, the
quantum dissipation pde(ω0) depend on the size of the surface
S and on the size of the volume V in eq 4. For example, for a
system radiating at the wavelength of the localized resonance
shown in Figure 2c, phe(λ0 = 435 nm) changes less than 1%
when the radius of the integration domains is doubled from 1
to 2 μm. We choose a fixed integration radius of 2 μm for all
simulations.
Figure 4a shows the computed efficiencies ηabs,bulk(λ0),

ηhe(λ0), and ηrad(λ0) and the corresponding absolute values for
the dipole emission pde(λ0). In the full spectral range, due to
the small dipole-to-surface distance, a large part of the power
emitted by the dipole is absorbed in the metal bulk, and only a
smaller part is radiated to the upper hemisphere. The quantum
efficiency of hot electron generation ηhe(λ0) is significant in the
spectral regions corresponding to the localized resonance
shown in Figure 2c and corresponding to the propagating
surface plasmons. A comparison of the results for pde(λ0) in
Figures 4a and 3a shows a slight reduction of pde(λ0) when the
quantum decay parameter γs,n is incorporated in the material
model. However, the peaks of pde(λ0) are still present, which
demonstrates that the optical resonance effects are the main
drivers for hot electron generation in our model system. In
both cases, with and without including the surface-scattering
effect in the material model, the maximum of the dipole
emission pde(λ0) is located at the resonance wavelength of the
localized resonance, at λ0 = 435 nm.
Next, we compare the quantum efficiency in the presence of

the nanoresonator with the quantum efficiency for a flat,
unstructured surface. Figure 4b shows the corresponding
spectra ηhe(λ0). In the case of the nanoresonator, the maximum
of the quantum efficiency is located close to the resonance
wavelength of the localized resonance, and is given by ηhe(λ0 =
431 nm) = 0.52, which is about 1 order of magnitude larger
than in case of the flat surface. The propagating surface
plasmons are responsible for another maximum ηhe(λ0 = 346
nm) = 0.32. In the case of the flat surface, the quantum

efficiency shows one maximum at the wavelength λ0 = 360 nm,
given by ηhe(λ0 = 360 nm) = 0.17. The spectra ηhe(λ0)
demonstrate that the presence of the nanoresonator has a
significant influence on the generation of energetic charge
carriers. Figure 4c,d emphasizes this by showing, for the
circular nanogroove resonator and the flat surface, respectively,
the electric field intensities in the vicinity of the dipole emitter
radiating at the wavelength λ0 = 431 nm, where the quantum
efficiency is maximal. The localized source strongly excites the
localized resonance of the nanoresonator, which leads to high
electric field values at the metal surface enabling enhanced hot
electron generation. Note that, close to the wavelength of the
localized resonance, the absolute values for the dipole emission
pde(λ0) are more than 1 order of magnitude larger for the
system with the nanoresonator than for the system without the
nanoresonator, see also Figure 3a.

Dependence of Hot Electron Generation on Emitter
Placement. Localized light sources can excite resonances that
cannot be excited by illumination from the far field, such as
dark surface plasmon modes19 or modes where the overlap
integral with the field caused by the far-field illumination is
negligible. This allows for additional degrees of freedom in
tailoring the light−matter interaction. It can be expected that
the position of the dipole emitter in our model system is a
degree of freedom that has a significant influence on the
generation of excited charge carriers. For investigating this

Figure 4. Simulations of hot electron generation for a localized
emitter placed at the dipole-to-surface distance zde = 20 nm for the
circular nanogroove resonator with r = 10 nm and a flat surface. The
modified permittivity function given by eq 3 is used. (a) Left y axis:
Area plot for the absorption efficiency ηabs = pabs,bulk/pde, hot electron
efficiency ηhe = phe/pde, and radiation efficiency ηrad = prad/pde for the
nanoresonator. Right y axis: Dipole emission pde for the nano-
resonator. (b) Quantum efficiency of hot electron generation ηhe for
the nanoresonator and a flat surface. (c, d) Log-plot (a.u.) of the
electric field intensity |E|2 resulting from a dipole emitter radiating at
the wavelength λ0 = 431 nm for the nanoresonator and a flat surface,
respectively.
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impact, we perform simulations of the hot electron generation
with various dipole-to-surface distances. The corresponding
results are shown in Figure 5a. In the full spectral range, with a

decreasing dipole-to-surface distance from zde = 500 nm to zde
= 10 nm, the quantum efficiency ηhe(λ0) strongly increases.
The most significant effect can be observed at the peak in the
spectrum corresponding to the localized resonance. This can
be explained through the zde-dependent overlap between
localized resonance and source near-fields: The resonance
excitation and the resulting electromagnetic near-fields increase
when the dipole-to-surface distance becomes smaller. Note
that, below 20 nm, the efficiency at the peak does not further
increase significantly with a decrease in the distance. This can
be understood by considering that, below 20 nm, almost all
emitted energy has already been funneled into the localized
resonance, and a further decrease of the distance does not
change the electric field distribution near the metal surface.
Such a saturation of the hot electron generation efficiency can
only be predicted with self-consistent formulas, as given by eqs
1, 3, and 4.
Next, we investigate the behavior of the resonance-induced

hot electron generation peak by performing a fine sampling of
the dipole-to-surface distance zde. Figure 5b shows the
corresponding dependence of the quantum efficiency ηhe. In
the case of the nanoresonator, the quantum efficiency varies
over 1 order of magnitude, from 3% to 52%, when the distance
decreases from 150 to 20 nm. In the case of the flat surface, the
quantum efficiency only increases from 2% to 7% when the
distance decreases from 150 to 20 nm.
By changing the dipole-to-surface distance further, from zde

= 20 nm to zde = 10 nm, an additional significant effect can be
observed in the case of the flat surface: The quantum efficiency

increases by more than 1 order of magnitude, up to ηhe = 0.46.
For such small distances, high-k surface plasmon polaritons can
be excited.49 These high-k surface plasmons have a very small
skin depth, which leads to strongly confined electric fields close
to the metal surface. This strong effect is not observed when
the nanoresonator is present because, in this case, the response
is fully dominated by the localized resonance and the energy
does not funnel into high-k surface plasmons. As a result, when
zde = 10 nm, the same order of magnitude of quantum
efficiency is obtained in the presence and in the absence of the
nanoresonator. Figure 5c shows the dependence of the
quantum decay parameter γs,n on the distance zde. The
quantum dissipation at the surface and the absorption power
in the metal bulk are related to the nominator and the
denominator in eq 4, respectively. For decreasing dipole-to-
surface distances, the quantum dissipation increases faster than
the absorption in the metal bulk leading to an increase of γs,n.
Along with the additional broadening of the plasmon

resonance described by γs,n, the surface-assisted hot electron
generation processes create a peculiar, nonthermal energy
distribution of excited electrons inside a driven plasmonic
nanocrystal.38,47 The computed shapes of nonthermal energy
distributions in a nanocrystal can be found in the refs 38 and
47. The intraband hot electrons, which we study here, are
generated near the surface, and their spectral generation rate
has a nearly flat distribution in the energy interval EF < E < EF

+ ℏω0. Because of the frequent electron−electron collisions,
the high-energy hot electrons experience fast energy relaxation.
Therefore, the resulting numbers of hot electrons in the steady
states of plasmonic nanostructures are always limited.
However, those hot electrons, when generated, have a good
chance to be injected into electronic acceptor states at the
surface.3,6,7,10,50,51 These electronic acceptors can be in the
form of semiconductor clusters (TiO2)

50,51 or adsorbed
molecular species.7,10 Consequently, the injected long-lived
hot electrons can cause chemical reactions in a solution6,7,10 or
surface growth.52 Such chemical and shape transformations can
be observed in experiments.
Based on the above results, we expect that in potential

experimental setups that use hot electron generation by
localized sources and nanostructured samples, the significant
spectral dependence and position dependence of the
generation rate can provide strong experimental signatures
and thus can provide guidelines for settings with high-
efficiency hot electron generation.

■ CONCLUSIONS

We analyzed the hot electron generation due to the emission of
light by a localized emitter placed in the near-field of a metal
nanoresonator with electromagnetic field calculations and an
approximate quantum model. For a resonant nanostructure on
the metal surface, enhanced hot electron generation was
observed. This enhancement is based on a plasmonic
resonance excited by the emitter. We showed that, for a
specific nanoresonator on a silver surface, the quantum
efficiency is about 1 order of magnitude larger than the
quantum efficiency of hot electron generation in the case of a
flat silver surface. We further demonstrated a strong spectral
and position dependence of the hot electron generation on the
placement of the emitter. In particular, the resonance
significantly favors these effects.
The physical reason behind the efficient energy conversion

in our system is that both the exciting source and the

Figure 5. Simulations of hot electron generation for a localized
emitter placed at different dipole-to-surface distances zde, for the
circular nanogroove resonator with r = 10 nm and a flat surface. The
modified permittivity function given by eq 3 is used. (a) Quantum
efficiency ηhe as a function of emitter wavelength for various distances
zde. (b, c) Quantum efficiency ηhe and quantum decay parameter γs,n,
respectively, depending on zde. The number n is the last step of the
iteration in eq 4. Note that the emitter wavelength changes as zde is
varied to match the spectral position of the peak in the spectrum due
to the localized resonance. The same wavelength is used for the flat
surface.
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nanoresonator have the same dimensionality: They are zero-
dimensional and, therefore, highly localized. Experimentally, a
zero-dimensional source of radiation is the key element in the
field of tip-enhanced spectroscopies, which includes scanning
near-field optical microscopy (SNOM),53,54 hot electron
nanoscopy,55 and hot electron tunneling settings.56 In tip-
driven spectroscopy, electromagnetic fields and the related hot
electron excitation processes become strongly confined in
small volumes, leading to a strong enhancement of light−
matter interaction. Our approach can also be used to
investigate coatings with quantum dots or other emitters on
resonance-supporting surfaces. The presented study provides a
theoretical background for hot electron generation with
localized light sources.
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8.3 Purcell enhancement with coupled eigenmodes

By continuously changing the system parameters of a nanoresonator, a coupling of the
underlying resonances can lead to a significant increase in the Q-factor of one of the
resonances. This increase is due to constructive and destructive resonance interference
and the associated suppression of radiation losses. The resulting high Q-factor resonance
is also called quasi BIC [105] and the associated effect of increased energy confinement
is used in various nanophotonics applications [99, 106, 107].

With Ref. [71], we demonstrate how different numerical methods can be used together
to comprehensively study coupled resonances and their effect on the Purcell enhancement
of a dipole emitter placed in a nanodisk. To engineer a quasi-BIC, we vary the aspect
ratio of the disk and compute the eigenmodes and eigenfrequencies for the different
aspect ratios with the linearization approach presented in Section 8.1. Based on the
computed eigenfrequencies, the Q-factor and the condition for the appearance of the
quasi-BIC are evaluated. Then, we place a dipole emitter in the nanodisk and use the
Riesz projection expansion approach given by Eq. (2.4) to investigate the contribution
of the quasi-BIC as well as the contributions of the other resonances to the resonance
expansion of the Purcell factor. We further compute the Riesz projection expansion of
the energy flux density in the far field of the nanodisk, given by Eq. (4.1). This allows to
understand how the interference between the individual resonances effects the radiation
pattern of the light source.
In the following, Ref. [71] is reprinted, which is published by the American Physical

Society under the terms of the Creative Commons Attribution 4.0 International license;
[Rémi Colom, Felix Binkowski, Fridtjof Betz, Yuri Kivshar, and Sven Burger. Enhanced
Purcell factor for nanoantennas supporting interfering resonances. Phys. Rev. Res. 4,
023189 (2022). doi: 10.1103/PhysRevResearch.4.023189.]

66

https://dx.doi.org/10.1103/PhysRevResearch.4.023189


PHYSICAL REVIEW RESEARCH 4, 023189 (2022)

Enhanced Purcell factor for nanoantennas supporting interfering resonances

Rémi Colom,1 Felix Binkowski ,1 Fridtjof Betz ,1 Yuri Kivshar,2 and Sven Burger 1,3,*

1Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
2Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia

3JCMwave GmbH, Bolivarallee 22, 14050 Berlin, Germany

(Received 3 November 2021; revised 17 March 2022; accepted 11 May 2022; published 6 June 2022)

We study the effect of coupled resonances and quasibound states in the continuum (quasi-BICs) on the Purcell
factor in dielectric resonant nanoantennas. We analyze numerically interfering resonances in a nanodisk with and
without a substrate when the modes are coupled to an emitter localized inside the nanodisk, and we quantify the
modal contributions to the Purcell factor also reconstructing the radiation patterns of the resonant system. It is
revealed that the Purcell effect can be boosted substantially for a strong coupling of resonances in the quasi-BIC
regime.
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I. INTRODUCTION

Resonances play a central role in the control of light-matter
interactions in nanophotonics. Plasmonic resonances enable
such a control via large near-field enhancements [1,2], which
allows, e.g., for realizing plasmonic nanoantennas to tailor the
radiation from quantum emitters [3,4]. Recently, the excita-
tion of Mie-type resonant modes [5,6] in high-refractive-index
dielectric resonators has proven to be very useful for a wide
range of applications, from the enhancement of nonlinear
effects to a resonant control of the phase in metasurfaces [7,8].
One important figure of merit for measuring the effect of
resonances on light-matter interactions is their quality factor
(Q factor), that quantifies the ability of a structure to trap light
and to enhance the electromagnetic fields.

Nanoresonators act as nanoantennas for strongly local-
ized light sources, like quantum dots or defects in crystalline
lattices, which can allow for the realization of efficient single-
photon sources by enhancing the emission of light [9,10].
Such a control of the emission via the modification of the
electromagnetic environment is a concept that dates back to
the pioneering work of Purcell [11] performed in the mi-
crowave range followed by the experiments of Drexhage [12]
that demonstrated the possibility of controlling the lifetime of
fluorescent molecules in the visible range. This phenomenon
is ubiquitous, and it has also been used to control the resonant
scattering by dielectric nanorod antennas [13].

The figure of merit that quantifies the emission enhance-
ment is called the Purcell factor [11], and it is proportional
to the Q factor. Optical nanoantennas were first realized
with plasmonic materials [3,4], but recently dielectric res-
onators have been shown to allow for large enhancements
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of the Purcell factor via the excitation of both electric and
magnetic optically-induced Mie-type resonances [14,15]. The
excitation of magnetic resonances presents the advantage of
enhancing light emission also via the magnetic dipole tran-
sitions. This effect was first theoretically predicted [15–17]
and confirmed later in experiments [18–20]. This is a very
promising application for dielectric nanoantennas as the en-
hancement of light emission empowered by the magnetic
dipole resonances is an emerging area of research [21,22]. The
enhancement of the Purcell factor was used successfully to
improve the emission of quantum dots in silicon nanoanten-
nas [23] and also for metallic and hybrid nanoantennas [24].
Control of the emission can also be achieved dynamically
[25]. Finally, nanoantennas can also be designed to enhance
the performance of quantum emitters, providing promising
platforms for the realization of single-photon sources [26].

Bound states in the continuum (BICs) appear as a special
type of nonradiating modes associated with an infinite
Q factor [27]. Such states can originate from different
physical mechanisms [28,29]. Symmetry protected BICs
occur in photonic crystal slabs, and they result from the
impossibility of these modes to couple to propagating fields
outside the photonic crystal because of symmetry restrictions
[27,30]. Further, the so-called accidental BICs appear from
interferences between several resonances [27,28]. They are
observed when a system parameter is varied continuously.
This concept was introduced in quantum mechanics where
the coupling between resonances is controlled by engineering
the potential [31].

In optics, one of the first attempts to study BICs was
made in the physics of photonic crystals [32]. While BICs
can be realized in gratings or photonic crystals which are infi-
nite in two directions, it is much more challenging to observe
such BICs in compact structures and even more in sub-
wavelength systems [27]. The existence of BICs, also called
embedded eigenstates, was predicted theoretically in a coated
nanosphere where the permittivity of the outer shell vanishes
[33]. In more realistic configurations, it is still possible to take
advantage of the coupling of resonances in nanostructures to
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increase the Q factor of one resonance, even if it does not
lead to accidental BICs with infinite Q factors. In photonics,
such an approach was suggested to enhance the Q factors of
the modes of optical microcavities [34] and coupled dielectric
nanopillars [35]. It was shown recently that high-refractive
index nanodisks supporting multiple resonances are a good
platform to employ this approach [36–38]. Due to similarity
of this approach with accidental BICs [31], the large Q fac-
tors achieved through the interference of several resonances
are called quasi-BICs. Quasi-BICs have been observed ex-
perimentally in AlGaAs nanodisks [39], and they have been
used in various applications [28,40] including nonlinear optics
[41–43] and lasing from a single nanoparticle [44]. Com-
pared to photonic crystal cavities, ring resonators, and other
setups [4], such compact nanostructures supporting quasi-
BICs exhibit lower Q factors and Purcell enhancements [45].
However, their relatively small device footprint allows these
resonators to be used, e.g., as meta-atoms in metasurfaces
[46].

Unlike BICs, which lead to a perfect confinement of light,
quasi-BICs suffer from residual radiation losses. As a conse-
quence, for a rigorous treatment of quasi-BICs it is important
to use quasinormal modes (QNMs) and associated complex
eigenfrequencies which generalizes modal approaches to dis-
sipative and non-Hermitian systems [45,47,48]. The influence
of quasi-BICs on light-matter interactions and, in particular,
their coupling to a light source can be quantified by using
QNM expansions. The QNM analysis of the coupling of an
electromagnetic dipole source to an optical resonator, i.e., the
modal expansion of the Purcell factor, has been carried out
through several approaches [15,49–52].

In this paper, we study quasi-BICs numerically. We
consider dielectric nanoresonators either with or without a
substrate and demonstrate that they can support interfering
resonances with a strong coupling between a pair of modes.
We choose to design the structure with the refractive index
of GaAs. The motivations behind this choice come from the
fact that including a dipole emitter into such a structure can
be realized using modern nanofabrication methods allowing
to include a quantum dot in GaAs nanodisk [53]. We carry
out numerical simulations with a localized source embedded
into the resonator to demonstrate different physical regimes.
Modal expansions of the Purcell factor and far-field patterns
reveal a complex interplay between different modal contri-
butions interfering destructively in the spectral vicinity of
quasi-BICs, yielding a strong enhancement of the Purcell
factor and single modal excitation when the parameters of
the source and resonator are tuned to match the quasi-BIC
conditions.

The major steps followed in this article are illustrated in
Fig. 1. In Sec. II, we vary the aspect ratio D/H of a GaAs nan-
odisk to control the interference between the two modes of the
nanodisk with or without a substrate. In particular, the strong
coupling between these modes leads to the appearance of a
high-Q mode: the quasi-BIC resonance. Section III considers
the coupling of a dipole source with the nanodisk, leading
to a complex electromagnetic response as seen in Fig. 1(b).
Modal expansions are employed to analyze the role of the
interference between the nanodisk modes for the coupling
with the dipole. These expansions enable to identify how

FIG. 1. Principle of the enhanced and suppressed emission with
interfering resonances. (a) Schematics of GaAs nanodisks with and
without a substrate. The aspect ratio D/H is tuned to control the
interference between the two main modes of the nanodisk. (b) Vi-
sualization of the electromagnetic field distribution resulting from a
dipole emitter, represented by a white sphere, which is located below
the top face of the nanodisk. Its frequency is chosen to excite the
two modes of interest. (c, d) 2D cross-sections through the dominant
two modal fields (left) and the total field distribution (right) visu-
alizing the real part of the y field component. Red and blue colors
correspond to negative and positive fields, respectively. The emitter
position is indicated with a white circle. (c) When the two modal
fields are excited in phase they interfere constructively, leading to
enhancement of dipole emission. (d) Out-of-phase excitation of the
two modal fields at a different dipole emission frequency, results in
suppressed emission.

the constructive interference between two modal contributions
leads to the enhancement of the dipole emission, as illustrated
in Fig. 1(c). However, destructive interference leads to the
inhibition of the dipole emission, as illustrated in Fig. 1(d).
The modal analysis of the radiation pattern is carried out in
Sec. IV. Finally, Sec. V concludes the paper.

II. QUASI-BICS IN ISOLATED NANODISKS

To understand the appearance of quasi-BIC states, first we
review the theoretical approach employed to study the mode
coupling [34,54,55]. A good insight in the physics of strong
coupling for interfering resonances can be gained from a phe-
nomenological model of mode coupling that involves the two
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modes with the uncoupled eigenfrequencies ωun,1 and ωun,2.
When these two eigenfrequencies are far apart in the complex
plane, there is no coupling between them. However, when
the eigenfrequencies get close to each other, the coupling
has to be taken into account and modifies the trajectories
of these eigenfrequencies when a parameter is varied. The
eigenfrequencies of the coupled modes can be found as the
eigenvalues of an effective two-mode Hamiltonian, and they
are equal to

ω± =
(ωun,1 + ωun,2

2

)

± √
γ ,

where

γ =
(ωun,1 − ωun,2

2

)2

+ v
2

with v being the coupling coefficient between the modes
[54]. We are interested in the regime where these two reso-
nances are close to each other, and therefore we assume that
�(ωun,1) = �(ωun,2) and v is real as in Ref. [54].

As explained in Refs. [34,54], two regimes of the mode
coupling may be realized depending on the relation between
v and 1

2 (ωun,1 − ωun,2). When 2v < |�(ωun,1 − ωun,2)|, the
mode eigenvalues become

ω± =
(ωun,1 + ωun,2

2

)

± i
√

|γ |,

and one observes that the coupling mostly alters the imaginary
part of the eigenvalues resulting in an avoided crossing of the
imaginary parts of the coupled eigenvalues and a crossing of
their real parts. This behavior is a direct signature of the mode
weak coupling. However, if 2v > |�(ωun,1 − ωun,2)|, then the
mode eigenvalues are presented as

ω± =
(ωun,1 + ωun,2

2

)

±
√

|γ |,

suggesting that the coupling of the eigenmodes mostly alters
the real part of the eigenfrequencies yielding, this time, an
avoided crossing of the real parts of the coupled eigenvalues
and a crossing of the imaginary parts. A more detailed discus-
sion on the coupling regimes between modes for a purely real
or a purely imaginary coupling constant can be found in the
Appendix. In the following, we discuss how the mode cou-
pling may result in the appearance of a hybridized quasi-BIC
mode.

We consider a Gallium Arsenide (GaAs) nanodisk res-
onator with a height H = 1260 nm and varying diameter D in
two different configurations: The nanodisk is just surrounded
by air (case 1), and, the nanodisk is placed on a glass substrate
and surrounded by a super-space of air (case 2). The optical
properties of the system are investigated in the near-infrared
wavelength range; the corresponding constant relative per-
mittivities in our model are εGaAs = 11.56, εsub = 2.25, and
εair = 1.0. The time-harmonic optical fields are modeled us-
ing Maxwell’s equations,

∇ × μ−1
0 ∇ × E(r, ω) − ε(r)ω2E(r, ω) = iωJ(r), (1)

where μ0 is the vacuum permeability, ε(r) is the permittivity,
and J(r) the source current density. For numerically solv-
ing Eq. (1), we use an adaptive, higher-order finite element

method (FEM) [56]. For computing the eigenmodes En of the
system and their associated eigenfrequencies ωn, i.e., solu-
tions to Eq. (1) where J = 0, the cylindrical symmetry of the
system is taken into account. Only modes with an azimuthal
quantum number equal to 1 or −1 are investigated because
these are the only ones excited by a dipole located on the axis
of rotation, which is the configuration we are investigating in
the second part of this study. Furthermore, only the component
of the polarization normal to the symmetry axis can couple to
the modes of interest and therefore we restrict to a polarization
with z = 0. Without loss of generality we chose a y-polarized
dipole.

To find a quasi-BIC condition, the interference between
two modes of the structure has to be tuned [34,36,57]. This
is done by varying the geometry parameter, D, and comput-
ing eigenmodes En and their associated eigenfrequencies ωn,
where n is the mode index. Note that alternatively, a perturba-
tion approach based on QNMs may be employed for finding
the quasi-BICs [58]. Figures 2(a), 2(b) 2(e), and 2(f) show
how the normalized frequency, �(ωnH/2c), and the Q factor,

Q = −
1

2

�(ωn)

�(ωn)
,

depend on the aspect ratio D/H . In Figs. 2(a) and 2(b), the
case where the GaAs nanodisk is located in air is considered.
It can be observed that the real part of the eigenfrequencies is
showing a repulsion behavior at D/H = 0.909 and an almost
coinciding peak reaching Q ≈ 800 is observed for the Q factor
of one of the modes while a minimum is seen for the other
mode. As discussed above, this behavior is an indication of
strong coupling between the two modes. The high-Q mode
can thus be considered to be a quasi-BIC. Figures 2(e) and
2(f) show the results for the second case, where the nan-
odisk is put on a glass substrate. It can be observed that,
for the investigated modes and parameter range, the real part
of the eigenfrequencies shows a crossing at D/H = 0.933.
We observe a peak of the Q factor reaching Q ≈ 400 at
D/H = 0.92. In fact, this peak is linked to the anti-crossing
or level-repulsion occurring for the imaginary parts of the
eigenfrequencies. This avoided crossing of the imaginary
parts of the eigenfrequencies shows up in Fig. 2(f) at about
D/H = 0.944. The qualitative analysis based on the effective
Hamiltonian discussed above shows that this behavior is an
indication of weak coupling between the two modes. The
transition from strong to weak coupling when a substrate is
added indicates that there must be an exceptional point, i.e.,
a condition for which the two coupled eigenvalues would
become degenerated [59], when continuously varying the re-
fractive index of the substrate from 1 to 1.5 [54,55,60,61].
To conclude the discussion on the avoided crossing of the
eigenfrequencies, we show, in Figs. 2(c), 2(d), 2(g), and 2(h),
the field patterns associated with both modes when the Q

factor is maximized. For the case without substrate, this oc-
curs for D/H = 0.909 while, when the substrate is added,
the maximum occurs for an aspect ratio of D/H = 0.92. This
helps to understand the level repulsion observed since, in both
cases, the modes have apparently very different field patterns:
The high-Q mode field is concentrated in hot spots located at
the top and bottom of the disk while, for the low-Q mode,
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FIG. 2. Real parts of two eigenfrequencies of interest (a, e) and
corresponding Q factors (b, f) as function of nanodisk aspect ratio
D/H . Avoided crossing of the real parts and local maximum and
minimum of the Q factors at D/H = 0.909 indicate strong coupling
for the nanodisk without substrate (a, b). Crossing of the real parts
of two eigenfrequencies at D/H = 0.93 and avoided crossing of the
Q factor curves at D/H = 0.944 leading to a peak at D/H = 0.92
indicate weak coupling for the nanodisk with substrate (e, f). Field
intensity maps |E| of the QNMs in an x-z cross-section through the
3D field distribution. Panel (c) [respectively, panel (d)] corresponds
to the high-Q (respectively, low-Q) mode of the isolated nanodisk
[at the aspect ratio indicated by the black (respectively, green) dot
in panel (b)]. Panel (g) [respectively, panel (h)], corresponds to the
high-Q (respectively, low-Q) mode of the nanodisk with substrate
[black (respectively, green) dot in panel (f)].

it is concentrated at the center of the disk. This apparent
difference in the localization of the modes certainly prevents
their merging.

III. COUPLING OF A POINT SOURCE

TO A NANORESONATOR

Now, we turn to the study of a dipole emitter coupled to
the investigated nanoresonator considering the two cases, the
nanoresonator with and without substrate. It is worth noting
that the coupling of a dipole with a BIC in an array of
nanoparticles have already been studied [62], but we will here
focus on the coupling of a dipole with the quasi-BIC arising
in an individual nanodisk. We consider Maxwell’s equations,
given by Eq. (1), with the current density J = jδ(r − rd ) that
is a point source located at rd. The Purcell factor, which
is used to quantify the enhancement of the emission, is de-
fined as �(ω) = −{�[E(ω, rd ) · j∗(ω, rd )]}/[2�b(ω)], where
�b(ω) describes the emission of the dipole in a homogeneous
medium of the permittivity εGaAs. The interest of studying the
Purcell factor and its modal analysis is twofold. On the one
hand, one can see how a mode with a Q factor as large as the
one of the quasi-BIC can affect the dipole emission. On the
other hand, looking at the modal analysis of the Purcell factor
would allow to use it as a probe to study the interplay between
several modes. This is particularly interesting for quasi-BICs
since interferences between modes are at the origin of their
formation.

To do so, we start by considering the Purcell factor for a
dipole located at the maximum of the field amplitude of the
high-Q mode. This position is on the symmetry axis of the
nanodisk, about 30 nm below the top face.

The consequences of the interplay between resonances at
the origin of the quasi-BIC can be better understood by carry-
ing out a modal analysis of the Purcell factor. Our method
for deriving modal expansions relies on the use of Riesz
projections [52,63]. The modal expansion of the Purcell factor
reads as

�tot(ω) =
2

∑

n=1

�n(ω) + �background(ω), (2)

where �n are the modal contributions to the Purcell factor
that are computed using contour integrals around the eigenfre-
quencies. Here, we take into account only the two interfering
modes, i.e., the modes which are also shown in Fig. 2. The
modal Purcell factors �1 and �2 are contributions correspond-
ing to these two modes. The term �background contains the
contributions of all other poles as well as the nonresonant
background [52,63]. Finally, �tot corresponds to the total
expansion including both the modal and background contri-
butions. The different black markers indicate the wavelengths
at which the radiation patterns are computed in Fig. 4. Details
about the modal expansions are provided in the Appendix.

First, we look at the coupling of the dipole to the nanores-
onator with the geometry corresponding to the maximum of
the Q factor in Fig. 2. The results of the modal analysis of
the Purcell factor are displayed in Fig. 3(a), for a nanodisk in
air with an aspect ratio D/H = 0.909, and, in Fig. 3(c), for a
nanodisk on a substrate with an aspect ratio D/H = 0.92. In
both cases, the peak observed in the Purcell factor spectrum
can be directly linked to the modal contribution correspond-
ing to the high-Q mode. In the region around the peak, the
contributions from the low-Q mode and the background are
very small or even negligible. This demonstrates that, for a
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FIG. 3. Modal analysis of the wavelength (λ) dependent Purcell factor � for a y-polarized dipole located on the symmetry axis 20 nm and
27 nm below the top face of the nanodisk in the case without substrate (a, b) and with substrate (c, d), respectively. (a) Modal expansion for the
aspect ratio D/H = 0.909 (maximum Q factor in Fig. 2(b). The high-Q mode corresponds to the modal Purcell factor �2 (a black solid curve)
and is solely responsible for the peak of the total Purcell factor �tot (dashed red curve) at around 1205 nm. The contributions of the low-Q mode
�1 (green solid curve) and of the background �background (dotted blue line) are negligible. (b) Modal expansion for D/H = 0.933 (crossing of
Q factors in Fig. 2(b). Both modal terms �1 and �2 are of the same order of magnitude and destructively interfere in regions where they are of
different sign. The impact of �background is constant and negligible in resonant regions. (c) Modal expansion for D/H = 0.92 (peak of the high
Q factor in Fig. 2(f). The high-Q mode corresponds to �2 and is responsible for the peak of �tot at around 1220 nm. (d) Modal expansion for
D/H = 0.944 (avoided crossing of Q factors in Fig. 2(f). The modal terms interfere, as in (b). The markers �optimized, �bd, �resonance, and �rd

indicate the wavelengths for which far-field patterns are displayed in Fig. 4.

resonator supporting a quasi-BIC, an emitter may easily excite
nearly exclusively this resonance. We note that the quasi-BIC
allows to reach a high Purcell factor of � ≈ 40 in the case
without substrate and � ≈ 20 in the case with substrate.

It is also worth looking at configurations where one can
expect that the contributions to the Purcell factor from the two
main modes would be of the same order of magnitude. This
would allow us to investigate the interplay between modal
contributions. This is the reason for showing, in Fig. 3(b), the
Purcell factor for an aspect ratio of D/H = 0.933 for the disk
without substrate corresponding to the crossing of the Q factor
of the two modes in Fig. 2(b). For the case with substrate, we
consider the aspect ratio D/H = 0.944 as it corresponds to
the avoided crossing of the imaginary parts of the eigenvalues
as can be seen from the Q-factor trajectories in Fig. 2(f).
This avoided crossing is caused by the interference of the
interacting modes. Therefore, we expect that the interference
will be seen in the contributions of the modal expansion.
The Purcell factor again shows a distinct maximum, with
a value of � ≈ 8 with substrate and � ≈ 10 without sub-
strate. However, as expected, both modal contributions have
the same order of magnitude. Also, the qualitative shape of
both spectra of the modal Purcell factors are approximately
mirror-symmetric to each other with respect to the resonance
wavelength. This behavior yields the fact that, away from

the resonance, the signs of the modal contributions of the
two modes are opposite, leading to destructive interference
in these spectral regions. This is the case in Fig. 3(b) for
wavelengths below ∼1210 nm and above ∼1230 nm. For the
case including a substrate in Fig. 3(d), we observe a sim-
ilar behavior for wavelengths below ∼1225 nm and above
∼1245 nm. The destructive interference between modes has
been used previously to qualitatively describe the appearance
of quasi-BICs [40]. In the present study, we show that the
effect can be quantified by using modal expansion techniques.

Note that the interplay between the modes at the optimal
aspect ratio becomes visible when the position of the dipole
is moved away from the hot spot of the high-Q mode. Corre-
sponding simulation results can be found in the Appendix.

IV. MODAL ANALYSIS OF RADIATION PATTERNS

It is well known that the coupling with nanostructures can
alter the radiation pattern of a quantum emitter [3]. This ability
to control the emission pattern of a dipole emitter with nanos-
tructures has a great practical interest since it can improve the
collection of the emitted field with an optical system. A modal
analysis allows to understand how each mode but also the
interferences between modes modifies the emission pattern.
We will consider the far-field pattern of the energy flux density
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FIG. 4. Modal decomposition of the θ -dependent, normalized radiation patterns toward the top for a dipole on the symmetry axis 20 nm
and 27 nm below the top face of the nanodisk in the case without substrate (a–d) and with substrate (e–h), respectively. The green (black)
solid curve corresponds to the angle-resolved, far-field modal energy flux s1 (s2) corresponding to the low-Q (high-Q) mode. The red dashed
curve corresponds to the total energy flux stot. The upper half of each diagram shows positive contributions while the lower half in gray shows
negative contributions. The dipole emission wavelengths correspond to the different � markers in Fig. 3 which are reproduced in the right
bottom of each emission diagram. Panels (a, e) show the on-resonant far-field radiation for nanodisks supporting the quasi-BIC (D/H = 0.909
and λ = 1206 nm, respectively, D/H = 0.92 and λ = 1219 nm) with clearly dominating contribution from the high-Q mode. Panels (b–d)
[respectively, panels (f–h)] show the far-field radiation for nanodisks with aspect ratios of D/H = 0.933, respectively, D/H = 0.944 (i.e., at
the avoided crossing, respectively, crossing of the eigenfrequencies, cf. Figs. 2(a) and 2(e) for on-resonant sources [λ = 1217 nm, 1237 nm
in panels (c) and (g)] and off-resonant sources [λ = 1204 nm, 1234 nm, 1219 nm, and 1247 nm in panels (b), (d), (f), and (h), respectively].
While for on-resonant sources a single mode is predominantly contributing to the far-field pattern (c, g), in off-resonant settings, the two
relevant modes can interfere constructively (b) or destructively (d, f, h), as can be seen from the equal or different signs of the two dominant
modal contributions in each case.

defined as s(r, ω) = 1
2�[E∗(r, ω) × 1

iωμ0
∇ × E(r, ω)] · n,

i.e., the projection of the Poynting vector on the normal vector
n in the direction of field propagation. The modal expansion
of s(r, ω) is computed using Riesz projections [63,64] leading
to the expression s(r, ω) =

∑2
n=1 sn(r, ω) + sbackground(r, ω),

where r is a point located in the far-field. We will in particular
look at the dependency of the radiation pattern with θ in the
x-z plane. In Fig. 4, the field patterns radiated by the dipole
upwards toward the air are plotted for different wavelengths
and for different aspect ratios. In Figs. 4(a)–4(d), results are
shown for the nanodisk without substrate for aspect ratios
equal to 0.909 and 0.933 while Figs. 4(g)–4(h) display results
for the nanodisk on a substrate for aspect ratios equal to 0.92
and 0.944. Please note that the lower region of the plot shown
in gray does not correspond to the field radiated downwards
but to the negative modal contributions. Negative contribu-
tions are particularly important here, since, as for the Purcell
factor, they are linked to the interferences between different
modal contributions. Radiation pattern toward the substrate
are actually shown in the Appendix. In Figs. 4(a) and 4(e),
we show the radiation pattern and its modal expansion at the
aspect ratio and wavelength of the quasi-BIC. Just like for
the Purcell factor, one mode has a much larger Q factor than

the other, it is not surprising to find that the radiation pattern
can then be almost entirely understood from the contribution
of the high-Q mode while the contributions from the low-Q
mode is negligible compared to the contribution of the high-Q
mode. The results of the modal expansion of the radiation
pattern for the nanodisk without substrate with the aspect ratio
equal to 0.933 are plotted in Figs. 4(b)–4(d). These computa-
tions are made for the wavelengths on both sides of the main
peak in Fig. 3(b), with 1204 nm, 1217 nm, and 1234 nm in
Figs. 4(b)–4(d), respectively.

For λ = 1204 nm, we obtain a positive contribution for
both the modes summing up to a radiation lobe between ∼ ±
45◦. For λ = 1217 nm, the main contribution is from mode
2 leading to a quite directional emission between ∼ ± 30◦.
Eventually, for λ = 1234 nm, an interference between the two
main modal contributions is observed with a positive contri-
bution from mode 2 between ±30◦ and a negative contribution
of mode 1 in the same range. In Figs. 4(f)–4(h), we show the
results of the modal expansions for the nanodisk on substrate
with D/H = 0.944 for the wavelengths 1215 nm, 1237 nm,
and 1247 nm, respectively. In Fig. 4(f), for λ = 1215 nm,
the mode 1 has a positive contribution for angles between
roughly 30 and −30 degrees while the mode 2 has a negative
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contribution in the same range of angles. Consequently, the
total radiation pattern is suppressed, resulting from the inter-
ference between several modes. A very analogous behavior
is observed at λ = 1247 nm in Fig. 4(h), however, in this
case, mode 1 has a negative contribution while mode 2 has
a positive contribution. There is, again, a strong interference
between the two modes and the far-field pattern cannot be un-
derstood without taking this interference into account. Finally,
in Fig. 4(g), for λ = 1237 nm corresponding to the peak of the
Purcell factor in Fig. 3(b), we observe that the contribution
from both modes of interest add up leading to a larger ampli-
tude of the radiation by the dipole and to a confined far-field
pattern.

V. CONCLUSIONS

We have numerically analyzed dielectric nanodisk res-
onators which support multiple resonances in overlap-
ping frequency ranges. Using a finite-element-method-based
framework, regimes where the resonators support quasi-
BIC resonances have been investigated. The impact of the
resonances on the Purcell factor describing the emission
enhancement of a localized source has been shown in the
quasi-BIC regime as well as in adjacent parameter regimes
where several competing resonances are excited. The modal
contributions to the Purcell factor have been computed using
the Riesz projection method, and it has been shown that a
single QNM causes the strongly enhanced dipole emission
in the quasi-BIC situation. Further, we have investigated the
modal, angular resolved far-field spectrum in on-resonance
as well as off-resonance conditions. This demonstrated that
modal interference strongly impacts both, far-field emission
strength as well as angular resolved radiation patterns. It has
been shown that micron-scale dielectric resonators supporting
quasi-BICs allow for high Purcell enhancement as well as for
highly directed emission of light. We expect that, apart from
the gained insight in the complex interference behavior in
multimodal resonators, these findings will allow for the design
of efficient and robust future photonic components, such as
single-photon emitters for quantum technology applications.

The source code and data for performing the numerical
simulations and producing the resulting figures as reported in
this article will be made available [65].
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APPENDIX A: RIESZ PROJECTION PRINCIPLE

AND RESULTS

Our approach for carrying out modal expansions relies
on Riesz projections [52,63,64]. In a first step, the quantity
of interest at real frequencies ω0 is expressed as a contour
integral using Cauchy’s integral formula. To this end, it has to
be analytically continued to the complex frequency plane. In a
second step, the resonance expansion is obtained by deform-
ing the contour around ω0 until it encloses neighboring poles
of the physical system and by the application of Cauchy’s
residue theorem. Each summand of the expansion corresponds
to a contour integral.

Using the example of the Purcell factor �(ω0) =
− 1

2�[E(ω0, rd ) · j∗(ω0, rd )]/�b(ω0), whose expansion is
shown in Fig. 3 of the main document, the first step yields

�(ω0) = −
1

2�b(ω0)

∮

C0

�[E(z, rd ) · j∗(z, rd )]

z − ω0
dz,

where C0 is a contour around ω0. The second step results in
the desired expansion of the Purcell factor,

�(ω0) =
∑

n

�n(ω0) + �background(ω0),

with

�n(ω0) = −
1

2�b(ω0)

×
∮

Cn

�[E(z, rd ) · j∗(z, rd )]

z − ω0
dz and

�background(ω0) = −
1

2�b(ω0)

×
∮

Cbackground

�[E(z, rd ) · j∗(z, rd )]

z − ω0
dz.

The contour Cn is the contour around the nth pole and
Cbackground is the large outer contour. Please refer to Fig. 5 and
note that, for quantities linear in the electric field, such as the
Purcell factor in the given form, the complex conjugate poles
located in the upper half of the complex plane can be ignored.
The integrals are computed numerically using the trapezoidal
rule for the used circular and ellipsoidal contours.

In Sec. IV, we expand the far-field pattern of the radiated
flux which is quadratic in the electric field, s[E(ω), E∗(ω)] =
1
2�[E∗(ω) × 1

iωμ0
∇ × E(ω)] · n, and hence involves its com-

plex conjugate. The method for expanding quadratic forms
was developed in [63]. The application of Cauchy’s residue
theorem requires a holomorphic expression and therefore
does not allow for complex conjugation. As the electric field
is a real quantity in the time domain, we have E∗(ω) =
E(−ω) for real ω. With the analytic continuation to the
complex plane E◦(ω) of E(−ω), the holomorphic expression
s[E(ω), E◦(ω)] = 1

2�[E◦(ω) × 1
iωμ0

∇ × E(ω)] · n is defined.
The poles of E◦(ω) are located in the upper part of the
complex plane. They are the complex conjugates of the res-
onance poles associated with E(ω) as shown in Fig. 5. The
expansion of s[E(ω), E◦(ω)] consequently features resonant
terms from poles in the lower and the upper part of the com-
plex plane. Following this approach [63], one can derive the
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FIG. 5. Contours used for the modal expansions of Purcell factor and emission pattern of a nanodisk with different aspect ratios D/H ,
either isolated or placed on a substrate. While the emission pattern is based on a quadratic form and requires contours around the complex
conjugate resonance frequencies ω∗

n , which are the poles of E◦(ω), the circular contours in the upper half space can be ignored for the Purcell
factor.

expansion of s[E(ω), E◦(ω)],

s[E(ω0), E◦(ω0)] = −
∑

n

1

2iπ

∮

Cn

s[E(z), E◦(z)]

z − ω0
dz

−
∑

n

1

2iπ

∮

C∗
n

s[E(z), E◦(z)]

z − ω0
dz

+
1

2iπ

∮

Cbackground

s[E(z), E◦(z)]

z − ω0
dz,

where Cn is again the contour around the nth pole and
Cbackground is the large background contour. As mentioned
above, we have to add the contours around poles in the up-
per part of the complex plane, which we denote by C∗

n . The
expansion of the radiation pattern toward the air is discussed
in Sec. IV. Here, for the sake of completeness, we show the
expansion of the radiation toward the substrate at the same
wavelengths and aspect ratios as in Fig. 4. Overall, the same
behavior is observed for the flux radiated toward the substrate
as it was for the flux radiated toward the air. In Fig. 6(a), one

FIG. 6. Modal analysis of the radiation pattern toward the substrate for a dipole located on the symmetry axis 27 nm below the upper base
of the nanodisk. The black markers refer to Fig. 3 where they mark the corresponding wavelengths. The optimized system (D/H = 0.92)
shown in panel (a) illustrates the dominance of a single mode. For panels (b)–(d) the aspect ratio is D/H = 0.944. Here, the radiation pattern
results from the interference between two dominant modes. In panel (b), the pattern is shown at a wavelength blue shifted from the maximal
Purcell enhancement, in panel (c), at the maximum and, in panel (d), at a red shifted wavelength.
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can see that the modal contribution from the high-Q mode
dominates all the other contributions. Figures 6(b)–6(d) show
once more that the radiation pattern of the flux results from
the interference of the two main modes. In Figs. 6(b) and 6(d),
they interfere destructively and, in Fig. 6(c), constructively.

APPENDIX B: COUPLING OF RESONANCES

In the main text, we employed a phenomenological method
to study the mode coupling. We used the following expres-
sions for the coupled eigenfrequencies:

ω± =
(ωun,1 + ωun,2

2

)

± √
γ , (B1)

where

γ =
(ωun,1 − ωun,2

2

)2

+ v
2, (B2)

with v being the coupling coefficient. While we then focused
on explaining the crossings and avoided crossings of real
and imaginary parts of the resonances as a consequence of
different coupling regimes, these formulas can provide further
insight into the couplings between resonances. Some addi-
tional results based on these formulas are provided in the
following.

We will study the following uncoupled resonance frequen-
cies:

ωun,1 = 1 − i0.01,

ωun,2 = 1 + � − i(0.01 + �ωi ). (B3)

For this study, we keep a fixed value of �ωi = 0.0025 and
study the trajectories of the coupled eigenvalues when �

is varied. The impact of the value of v on the coupling of
resonances will be studied for two cases: in the first case v

is real-valued and positive and in the second case v
2 is purely

imaginary. We will also study the impact of the coupling of
the resonances on their respective Q factor.

1. Coupling of resonance for v
2 real and positive

Let us first study the coupling of resonances for a coupling
coefficient v which is real and positive. A careful study of the
behavior of the function γ in Eq. (B2) reveals three different
behaviors depending on the relative values of γ and �ωi.
We can start by reexpressing γ for ωun,1 and ωun,2 defined
in Eq. (B3):

γ =
(

� − i�ωi

2

)2

+ v
2

=
�2 + 4v

2 − �ω2
i

4
− i

� ∗ �ωi

2
. (B4)

FIG. 7. Real parts Re(ω±), imaginary parts Im(ω±) and Q factors Q± of the two coupled frequencies ω± as a function of the difference
of the real parts of the uncoupled eigenfrequencies � = Re(ωun,2 − ωun,1). The trajectories are given for three different couplings v

2, with v

being real and positive. For better readability a vertical line is shown at � = 0.
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(a) (g)

(b)

(c)

(e)

(f)

(h)

(i)

v2= 10-4 v2=1.5625*10-6 v2=1.2*10-6 

(d)

FIG. 8. Real parts Re(ω±), imaginary parts Im(ω±) and Q factors Q± of the two coupled frequencies ω± as a function of the difference of
the real parts of the uncoupled eigenfrequencies � = Re(ωun,2 − ωun,1). The trajectories are given for three different couplings v

2 = iu, with
u being real and positive. For better readability a vertical line is shown at � = 0.

One notices that the real part of γ cancels out for � =
±

√
�ω2

i − 4v
21 while its imaginary part cancels out for � =

0. Studying the roots of the real part of γ , three regimes of
coupling can then be distinguished depending on the relative

values of v
2 and �ω2

i : v
2 >

�ω2
i

4 , v
2 = �ω2

i

4 , and v
2 <

�ω2
i

4 .

In the example we study, �ω2
i

4 = 1.5625 ∗ 10−6. We then plot
the trajectories of the real and imaginary parts of the coupled
eigenvalues for v

2 larger, equal and smaller than 1.5625 ∗
10−6. The results are plotted in the following figures along
with the variation of the Q factor as a function of �.

In Figs. 7(a)–7(c), we plot these trajectories for v
2 = 10−4

and thus larger than 1.5625 ∗ 10−6. The trajectories of the
eigenvalues display a behavior typical for a strong coupling
as discussed in the main text with an avoided crossing of the
real parts and a crossing of the imaginary parts. On both sides
of this crossing, the Q factor of one mode increases while the
Q factor of the other one decreases.

The trajectories of the eigenvalues when v
2 = 1.5625 ∗

10−6 are shown in Figs. 7(d)–7(f). It is clearly seen that the
real part and the imaginary parts cross at � = 0. The two
eigenfrequencies are thus completely degenerated at � = 0
which is linked to the existence of an exceptional point, a
degeneracy existing in non-Hermitian systems. The behavior
of the Q factor is similar to the one observed in Fig. 7(c).

Finally, the trajectories for v
2 < 1.5625 ∗ 10−6 are shown

in Figs. 7(g)–7(i). In this case, there is a crossing of the real
part and an avoided crossing of the imaginary part. ω+ and ω−

are actually swapped on one side and the other of � = 0. This
behavior might certainly be seen as a jump from one Riemann
sheet to the other.

2. Coupling of resonance for v
2 purely imaginary

A similar analysis to the one done in the previous sec-
tion can be performed for v

2 which is purely imaginary v
2 =

iu with u being real-valued. γ can then be rewritten in the
following way:

γ =
(

� − i�ωi

2

)2

+ v
2

=
�2 − �ω2

i

4
− i

� ∗ �ωi − 2u

2
. (B5)

This time, the roots of the real part of γ occur for � = ±�ωi

while the imaginary part of γ vanishes for � = 2u
�ωi

. The
different regimes of coupling now depend on the relative
values of �ωi and 2u

�ωi
or equivalently the relative values of

u and �ω2
i

2 . We will then study the coupling of resonances

when u >
�ω2

i

2 , u = �ω2
i

2 and finally u <
�ω2

i

2 . In the case we

study, �ω2
i

2 = 3.125 ∗ 10−6. The trajectories of the coupled

eigenvalues for u = 10−4 so larger than �ω2
i

2 are shown in
Figs. 8(a)–8(c). These trajectories display a strong coupling
behavior with an avoided crossing of the real parts of the
coupled eigenvalues. This avoided crossing coincide this time
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with a peal of the imaginary part of one eigenvalue and a dip of
the other one. As a consequence there is a peak of the Q factor
associated with one eigenvalue and a dip of the Q factor of the
other eigenvalue.

The trajectories of the eigenvalues for u = 3.12510−6

which is equal to �ω2
i

2 are shown in Figs. 8(d)–8(f). This
reveals the existence of an degeneracy of the eigenvalue, i.e.,
an exceptional point, where both the real and imaginary parts
of the two eigenvalues are identical.

Finally, when u = 2.510−6 which is smaller than �ω2
i

2 the
trajectories of the eigenvalues are displayed the behavior ob-
served in Figs. 8(g)–8(i). These trajectories reveal a weak
coupling behavior with a crossing of the real part of the
coupled eigenvalues and an anticrossing of the imaginary part.

APPENDIX C: ADDITIONAL CALCULATIONS

FOR THE EMISSION OF A DIPOLE EMITTER

In the main text we keep the position of the dipole emitter
fixed and show how the coupling effects the modal contribu-
tions �n(ω) of the Purcell enhancement at the hot spot of the
high-Q mode. �n(ω) depends on the electric field strength at
the dipole position and if the quasi BIC condition is met, the
contribution of the low-Q mode at this point is much smaller.
For a slightly altered aspect ratio the field values become com-
parable and interference can be observed. Instead of varying
the aspect ratio, one can also consider the enhancement at
different dipole positions. For the sake of completeness in

FIG. 9. Purcell factor for a dipole located close to the hot spot
of the low-Q mode, on the symmetry axis 700 nm above the bottom
of the nanodisk. The contributions of both modes are similar and
positive at this position leading to a total Purcell factor which is the
superposition of the two main modes.

Fig. 9 we provide a corresponding example where the contri-
butions of both modes are similar. For this example the dipole
is positioned at the symmetry axis close to the center of the
nanodisk 700 nm above the bottom face.
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Nédélec finite elements. J. Comp. Phys. 231, 5890 (2012). doi: 10.1016/j.jcp.
2012.05.013.

85

https://doi.org/10.1201/9781420011685
https://doi.org/10.1201/9781420011692
https://doi.org/10.1002/pssb.200743192
https://jcmwave.com/jcmsuite/
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.17169/refubium-7589
https://doi.org/10.17169/refubium-7589
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1137/130932132
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1088/0953-8984/27/18/183204
https://doi.org/10.1088/0953-8984/27/18/183204
https://doi.org/10.1016/S0030-4018(01)01063-X
https://doi.org/10.1016/j.jcp.2012.05.013
https://doi.org/10.1016/j.jcp.2012.05.013


[90] G. Toscano, S. Raza, A.-P. Jauho, et al. Modified field enhancement and extinc-
tion by plasmonic nanowire dimers due to nonlocal response. Opt. Express 20,
4176 (2012). doi: 10.1364/OE.20.004176.

[91] O. Schnitzer, V. Giannini, S. A. Maier, et al. Surface plasmon resonances of
arbitrarily shaped nanometallic structures in the small-screening-length limit.
Proc. Royal Soc. A 472, 20160258 (2016). doi: 10.1098/rspa.2016.0258.

[92] J. D. Jackson. Classical Electrodynamics, 3rd ed. Wiley: New York (1998).

[93] L. Rickert, T. Kupko, S. Rodt, et al. Optimized designs for telecom-wavelength
quantum light sources based on hybrid circular Bragg gratings. Opt. Express 27,
36824 (2019). doi: 10.1364/OE.27.036824.

[94] Z. Shao, W. Porod, C. S. Lent, et al. An eigenvalue method for open-boundary
quantum transmission problems. J. Appl. Phys 78, 2177 (1995). doi: 10.1063/
1.360132.

[95] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, et al. Optically res-
onant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/
science.aag2472.

[96] P. West, S. Ishii, G. Naik, et al. Searching for better plasmonic materials. Laser
Photonics Rev. 4, 795 (2010). doi: 10.1002/lpor.200900055.

[97] N. Nikolova, J. Bandler, and M. Bakr. Adjoint techniques for sensitivity analysis
in high-frequency structure CAD. IEEE Trans. Microw. Theory Techn. 52, 403
(2004). doi: 10.1109/TMTT.2003.820905.

[98] S. Burger, L. Zschiedrich, J. Pomplun, et al. Fast simulation method for parameter
reconstruction in optical metrology. Proc. SPIE 8681, 380 (2013). doi: 10.1117/
12.2011154.

[99] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, et al. Subwavelength dielectric res-
onators for nonlinear nanophotonics. Science 367, 288 (2020). doi: 10.1126/
science.aaz3985.

[100] G. Kewes, F. Binkowski, S. Burger, et al. Heuristic Modeling of Strong Cou-
pling in Plasmonic Resonators. ACS Photonics 5, 4089 (2018). doi: 10.1021/
acsphotonics.8b00766.

[101] F. Betz, F. Binkowski, and S. Burger. RPExpand: Software for Riesz projection
expansion of resonance phenomena. SoftwareX 15, 100763 (2021). doi: 10.1016/
j.softx.2021.100763.

[102] S. Linic, P. Christopher, and D. B. Ingram. Plasmonic-metal nanostructures for
efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011). doi:
10.1038/nmat3151.

[103] M. L. Brongersma, N. J. Halas, and P. Nordlander. Plasmon-induced hot carrier
science and technology. Nat. Nanotechnol. 10, 25 (2015). doi: 10.1038/nnano.
2014.311.

[104] G. V. Hartland, L. V. Besteiro, P. Johns, et al. What’s so Hot about Elec-
trons in Metal Nanoparticles? ACS Energy Lett. 2, 1641 (2017). doi: 10.1021/
acsenergylett.7b00333.

86

https://doi.org/10.1364/OE.20.004176
https://doi.org/10.1098/rspa.2016.0258
https://doi.org/10.1364/OE.27.036824
https://doi.org/10.1063/1.360132
https://doi.org/10.1063/1.360132
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1002/lpor.200900055
https://doi.org/10.1109/TMTT.2003.820905
https://doi.org/10.1117/12.2011154
https://doi.org/10.1117/12.2011154
https://doi.org/10.1126/science.aaz3985
https://doi.org/10.1126/science.aaz3985
https://doi.org/10.1021/acsphotonics.8b00766
https://doi.org/10.1021/acsphotonics.8b00766
https://doi.org/10.1016/j.softx.2021.100763
https://doi.org/10.1016/j.softx.2021.100763
https://doi.org/10.1038/nmat3151
https://doi.org/10.1038/nnano.2014.311
https://doi.org/10.1038/nnano.2014.311
https://doi.org/10.1021/acsenergylett.7b00333
https://doi.org/10.1021/acsenergylett.7b00333


[105] C. W. Hsu, B. Zhen, A. D. Stone, et al. Bound states in the continuum. Nat. Rev.
Mater. 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48.

[106] K. Koshelev, A. Bogdanov, and Y. Kivshar. Meta-optics and bound states in the
continuum. Sci. Bull. 64, 836 (2019). doi: 10.1016/j.scib.2018.12.003.

[107] V. Mylnikov, S. T. Ha, Z. Pan, et al. Lasing Action in Single Subwavelength
Particles Supporting Supercavity Modes. ACS Nano 14, 7338 (2020). doi: 10.
1021/acsnano.0c02730.

87

https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1021/acsnano.0c02730
https://doi.org/10.1021/acsnano.0c02730

	Einzelarbeiten für die Dissertation
	Weitere Publikationen
	Zusammenfassung
	Danksagung
	Abstract
	Keywords

	Introduction
	Riesz projection expansion for the investigation of light-matter interaction
	Nanoresonators with nonlocal material properties
	Resonances and optical far-field quantities
	Computing physically relevant eigenmodes and eigenfrequencies
	A Riesz-projection-based method for nonlinear eigenvalue problems
	1 Introduction
	2 Riesz projection method for NLEVPs
	2.1 Sketch of the approach
	2.2 Generalized approach
	2.3 Riesz projections with physical source fields
	2.4 Algorithm
	2.5 Numerical realization

	3 Application of the method
	3.1 Resonant states in an open quantum system
	3.2 Photonic nanoantenna
	3.3 Resonances based on the hydrodynamic Drude model

	4 Conclusions
	Acknowledgements
	References

	Computing eigenfrequency sensitivities using Riesz projections
	Computation of eigenfrequency sensitivities using Riesz projections for efficient optimization of nanophotonic resonators
	Results
	Theoretical background and numerical realization
	Resonances in nanophotonics
	Riesz projections for eigenfrequency sensitivities
	Numerical realization and direct differentiation
	Application
	Eigenfrequency sensitivities of a nanophotonic resonator
	Performance benchmark
	Q-factor optimization

	Conclusions
	Data availability
	References
	Code availability
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

	Conclusion
	Appendix
	Linearization of resonance problems in dispersive material systems
	Combining quantum and classical models for emitter-resonator systems
	Purcell enhancement with coupled eigenmodes

	Auxiliary field approach for dispersive nano-optical systems
	Application to metallic grating
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References
	Bibliography

