34 research outputs found

    Influence of colorants on thermo-oxidative degradation of polycarbonate

    Get PDF
    Dyes and pigments are additives used in polymer systems to change the original coloration of the material. However, the thermal and photochemical stability of the polymer is frequently affected with the incorporation of these additives. The aim of this work was to study the influence of different colorant types (bismuth vanadate pigment, condensation diazo pigment, Cu-phthalocyanine dye and anthraquinone dye) on the thermo-oxidative stability of polycarbonate. Dynamic thermogravimetric analysis at different heating rate were carried out to evaluate the decomposition behavior of the material and to calculate the activation energy related to the decomposition process according to the FLYNN and WALL method. The curves of conversion rate showed that the polycarbonate with or without colorants present three steps of thermal decomposition, however the decomposition rate in theses steps for polycarbonate containing colorants is almost always higher than in polycarbonate without colorants. This indicates that the colorants accelerate the polycarbonate decomposition. On the other hand, the activation energy did not present the same behavior found to curves of conversion rate, suggesting that the decomposition reaction of polycarbonate does not follow a first order kinetic such as is based the FLYNN and WALL method.Corantes e pigmentos são incorporados aos polímeros principalmente para melhorar suas propriedades estéticas. Porém, estes aditivos podem afetar a estabilidade térmica e fotoquímica do material. Este trabalho teve como objetivo estudar a influência de diferentes classes de colorantes sobre a estabilidade termo-oxidativa do policarbonato (PC), empregando os pigmentos à base de diazo de condensação e vanadato de bismuto e os corantes do tipo antraquinona e ftalocianina de cobre. Para tanto, foram realizados ensaios termogravimétricos no modo dinâmico em diferentes taxas de aquecimento e avaliadas as taxas de conversão, determinadas pela derivação das curvas termogravimétricas, e as energias de ativação, determinadas segundo o método de FLYNN e WALL. A análise da taxa de conversão revelou que a decomposição do PC contendo ou não colorantes ocorre em três etapas principais, porém a velocidade nestas etapas para o PC com colorantes é, na maioria dos casos estudados, superior à taxa de decomposição do PC puro. Isto indica que os colorantes estudados aceleram a degradação do PC. Entretanto, a energia de ativação calculada segundo o método de FLYNN e WALL não apresentou a mesma tendência observada nos resultados obtidos a partir das taxas de decomposição, sugerindo que a decomposição do PC não deve ser regida por uma cinética de primeira ordem, conforme se baseia o modelo de FLYNN e WALL.1028103

    Effects of the presence of cellulose and curaua fibers on the thermal and mechanical properties of eco-composites based on cellulose acetate

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOLos materiales eco-compósitos han obtenido el interés de la academia, debido a sus características amigables al medio ambiente. En este trabajo, se prepararon dos grupos de eco-compósitos con matriz de acetato de celulosa, reforzados con fibras de celulos172533546FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2010/02098-02010/17804-7Los autores agradecen el financiamiento de los proyectos CONACYT 251504 y 264110. Además,se agradece a EMBRAPA por donar las fibras y aFAPESP (2010/02098-0 y 2010/17804-7

    Dynamic Mechanical Behavior And Relaxations In Polymers And Polymeric Blends [comportamento Dinâmico-mecânico E Relaxações Em Polímeros E Blendas Poliméricas]

    No full text
    Dynamic mechanical analysis (DMA) is widely used in materials characterization. In this work, we briefly introduce the main concepts related to this technique such as, linear and non-linear viscoelasticity, relaxation time, response of material when it is submitted to a sinusoidal or other periodic stress. Moreover, the main applications of this technique in polymers and polymer blends are also presented. The discussion includes: phase behavior, crystallization; spectrum of relaxation as a function of frequency or temperature; correlation between the material damping and its acoustic and mechanical properties.282255263Wunderlich, B., (1997) Thermal Characterization of Polymer Materials, 1, p. 305. , Turi, E. A., ed.2nd.ed., Academic Press Inc.: New YorkWetton, R.E., (1986) Developments in Polymer Characterization, p. 179. , Dawkins, J. V., ed.Elsevier Applied Sci. Publishers: LondonMcCrum, N.G., Buckley, C.P., Bucknall, C.B., (1997) Principles of Polymer Engineering, 2nd Ed., , Oxford University Press Inc.: New York, cap.Brown, M.E., (1988) Introduction to Thermal Analysis, 1st Ed., , Chapman and Hall Ltd.: New York, cap.8Nielsen, L.W., (1974) Mechanical Properties of Polymers and Composites, 1-2. , Marcel Dekker, INC.: New YorkMurayama, T., (1988) Encyclopedia of Polymer Science and Engineering, 5, p. 299. , Mark, H. F.Bikales, N. M.Overberger, C. G.Menges, G.Kroschwits, J. I., eds.2nd ed., John Wiley &ampSons: New YorkMenard, P.K., (1999) Dynamic Mechanical Analysis: A Practical Introduction, , CRC Press LLC: New YorkFerry, J.D., (1980) Viscoelastic Properties of Polymers, , John Wiley & Sons: New YorkWard, I.M., (1983) Mechanical Properties of Solid Polymers, 2nd Ed., , John Wiley & Sons: New YorkHutchinson, J.M., (1997) The Physics of Glassy Polymers, p. 85. , Haward, R. N.Young, R. J., Eds.2nd Ed.Chapman and Hall: LondonGradin, P., Howgate, P.G., Seldén, R., Brown, R., (1989) Comprehensive Polymer Science, 2, p. 533. , Allen, G.Bevington, J. C.Booth, C.Price, C., eds.1st ed.Pergamon Press: New YorkMark, J.E., Eisenberg, A., Graessley, W.W., Mandelkern, L., Samulski, E.T., Koenig, J.L., Wignall, G.D., (1993) Physical Properties of Polymers, 2nd Ed., , American Chemical Society: WashingtonOlabisi, O., Robeson, L.M., Shaw, M.T., (1979) Polymer-Polymer Miscibility, , Academic Press: New YorkHeijboer, J., (1977) Int. J. Polym. Mater., 6, p. 11Jho, J.Y., Yee, A.F., (1991) Macromolecules, 24, p. 1905Yee, A.F., Smith, S.A., (1981) Macromolecules, 14, p. 54Schaefer, J., Steijskal, E.O., Perchak, D., Skolnick, J., Yaris, R., (1985) Macromolecules, 18, p. 368Yee, A.F., (1977) Polym. Eng. Sci., 17, p. 213Floudas, G., Higgins, J.S., Meier, G., Kremer, F., Fischer, E.M., (1993) Macromolecules, 26, p. 1676Jones, A.A., (1985) Macromolecules, 18, p. 902Hoff, E.A.W., Robinson, D.W., Willbourn, A.H., (1955) J. Polym. Sci., 18, p. 161Williams, G., (1966) Trans-Faraday Soc., 62, p. 2091Dionisio, M.S., Moura-Ramos, J.J., Williams, G., (1994) Polymer, 35, p. 1705Diaz-Calleja, R., Devine, I., Gargallo, L., Radic, D., (1994) Polymer, 35, p. 151Utracki, L.A., (1990) Polymer Alloys and Blends: Thermodynamics and Rheology, p. 1. , Hanser Publishers: New YorkPaul, D.R., Bucknall, C.B., (1999) Polymer Blends, , John Wiley & Sons: New YorkCassu, S.N., Felisberti, M.I., (1999) Polymer, 40, p. 4845Santos, L.E.P., (1995), Dissertação de Mestrado, Universidade Estadual de Campinas, BrasilKempler, D., Sperling, L.H., Utracki, L.A., Interpenetrating Polymer Networks (1994) Advances in Chemistry Series, p. 234. , Washington, DCFelisberti, M.I., (1990), Ph. Thesis, Albert-Ludwig-Universität, AlemanhaFelisberti, M.I., Müller, G., Stadler, R., Polym. Mater Sci. Eng (1990) Proc. of ACS Div. PMSE, 62, p. 659Rocha, S.M., (1998), Tese de Doutorado, Universidade Estadual de Campinas, BrasilSanchez, E.M.S., Zavaglia, C.A.C., Felisberti, M.I., (2000) Polymer, 41, p. 765Di Lorenzo, M.L., Frigione, M., (1997) J. Polym. Eng., 17, p. 429Koninig, C., Van Duin, M., Pagnoulle, C., Jerome, R., (1998) Prog. Polym. Sci., 23, p. 707Costa, S.C.G., Felisberti, M.I., (1999) J. Appl. Polym. Sci., 72, p. 1835Carone Jr., E., Felisberti, M.I., Nunes, S.P., (1998) J. Mater. Sci., 33, p. 3729Lipatov, Y.S., (1994) Interpenetrating Polymer Network, , Klempson, D.Sperling, L. H.Utracki, L. A., eds.ACS: Washington, DCChang, M.C.O., Thomas, D.A., Sperling, L.H., (1988) J. Polym. Sci., Part B: Polym. Phys., 26, p. 1627Hourston, D.J., Schäfer, F.-U., (1996) High Perform. Polym., 8, p. 19Boyer, R.F., (1968) Polym. Eng. Sci., 8, p. 161Heijboer, J., (1968) J. Polym. Sci., Part C: Polym. Sym., 16, p. 3755Keskkula, H., Turley, S.G., Boyer, R.F., (1971) J. Appl. Polym. Sci., 15, p. 351Karger-Kocsis, J., Kuleznev, V.N., (1982) Polymer, 23, p. 69

    Phase Behavior Of Blends Of Linear Low Density Polyethylene And Poly(ethene-propene-1-butene)

    No full text
    The aim of this work was the study of blends of linear low density polyethylene (LLDPE) and an ethene-propene-1-butene terpolymer (t-PP). Two types of polyethylene were used to prepare the blends: an ethene-co-1-hexene (LLDPE(H)) copolymer and an ethene-co-1-octene (LLDPE(O)) copolymer. These copolymers present similar comonomer contents, molar mass, molar mass distribution and catalyst systems, but differ in their comonomer distribution. The blends were obtained through mechanical mixing using a single screw extruder at different compositions: 20, 40, 50, 60 and 80 wt.% of LLDPE. From DSC measurements two separated melting and crystallization peaks were observed and dynamic mechanical analysis showed two glass transitions indicating that LLDPE/t-PP blends are immiscible in amorphous and crystalline phases in the solid state. X-ray diffraction showed that the unit cell parameters of both polymers in the blends remain unchanged independent of the composition of the blend. © 2004 Elsevier Ltd. All rights reserved.415894902Deanin, R.D., Chuang, C.H., Polyolefin polyblends (1993) Handbook of Polyolefins: Synthesis and Properties, pp. 779-789. , C. Vasilean R.B. Seymour Marcel Dekker New YorkPlochocki, A.P., Polyolefin blends (1978) Polymer Blends, 2. , D.R. Paul S. Newman Academic New YorkZhou, X.Q., Hay, J.N., (1993) Polymer, 34 (22), pp. 4710-4716James, D.E., Ethylene polymers (1986) Encyclopedia of Polymer Science and Engineering, 6, pp. 429-446. , H.F. Mark N.M. Bikales C.G. Overberger G. Menges John Wiley and Sons New YorkKaminsky, W., Polyolefins (1992) Handbook of Polymer Synthesis Part A, , H.R. Kricheldorf Marcel Dekker New YorkYamaguchi, M., Nitta, K.H., Miyata, H., Masuda, T., (1997) J Appl Polym Sci, 63 (4), pp. 467-474Yamaguchi, M., Miyata, H., Nitta, K.H., (1997) J Polym Sci Part B: Polym Phys, 35 (6), pp. 953-961Wilfong, D.L., Knight, G.W., (1990) J Polym Sci Part B: Polym Phys, 28 (6), pp. 861-870Karbashewski, E., Kale, L., Rudin, A., Tchir, W.J., Cook, D.G., Pronovost, J.O., (1992) J Appl Polym Sci, 44 (3), pp. 425-434Brandrup, J., (1975) Polymer Handbook, 27. , E.H. Immergut John Wiley & Sons New YorkBalbontin, G., Camurati, I., Dall'Occo, T., Zeigler, R.C., (1995) J. Mol. Catal A: Chem., 98 (3), pp. 123-133Neves, C.J., Monteiro, E., Habert, A.C., (1993) J. Appl. Polym. Sci., 50 (5), pp. 817-824Todo, A., Kashiwa, N., (1996) Macromol Symp, 101, pp. 301-308Long, Y., Stachurski, Z.H., Shanks, R.A., (1991) Polym. Int., 26, pp. 143-146Pukánszky, B., Tüdös, F., Kalló, A., Bodor, G., (1989) Polymer, 30 (8), pp. 1399-1406Khanna, Y.P., Turi, E.A., Taylor, T.J., Vickroy, V.V., Abbot, R.F., (1985) Macromolecules, 18 (6), pp. 1302-1309Brady, J.M., Thomas, E.L., (1988) J Polym Sci Part B: Polym Phys, 26 (12), pp. 2385-2398Starck, P., (1997) Eur. Polym. J., 33 (3), pp. 339-34

    Dynamic Mechanical Spectroscopy Applied To Study The Thermal And Photodegradation Of Poly(2,6-dimethyl-1,4-phenylene Oxide)/high Impact Polystyrene Blends

    No full text
    The thermal and photooxidative degradation of high impact polystyrene (HIPS) and its blends with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) have been studied under accelerated conditions. HIPS and its blends containing 40, 50 and 60% of PPO, called PPO 40, PPO 50 and PPO 60, were submitted to thermal (ASTM-D5510) and photochemical (ASTM-G53) ageing. The extent of degradation was accompanied by infrared spectroscopy (FTIR), Raman spectroscopy (FT-Raman) and dynamic mechanical analysis (DMA). FTIR and DMA are techniques very sensitive to chemical groups and to relaxation of polymers, respectively. DMA showed that the glass transition of the polybutadiene phase of the external layers of aged HIPS and its blends is shifted to higher temperatures in comparison to non-aged reference samples. The deeper the analysed layer, the more the Tg is shifted to the Tg of the reference material. By FTIR analysis, it was possible to register spectroscopic changes only in the outermost layer (80 μm) while, by DMA, it was possible to detect changes at least to 800 μm depths. The FT-Raman showed that the cis units are the first to be degraded, which explains the shift of the Tg of the polybutadiene phase. © 2003 Elsevier B.V. All rights reserved.3701-2293301Prasad, A.V., Singh, R.P., (1998) J. Appl. Polym. Sci., 70, p. 637Aycock, D., Abolins, V., White, D.M., (1988) Encyclopedia of Polymer Science and Engineering, 13, p. 1. , H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, J.I. Kroschwitz (Eds.), second ed., Wiley, New YorkPaul, D.R., Barlow, J.W., Keskkula White, H., (1988) Encyclopedia of Polymer Science and Engineering, 12, p. 436. , H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges, J.I. Kroschwitz (Eds.), second ed., Wiley, New YorkPiton, M., Rivaton, A., (1996) Polym. Degrad. Stab., 53, p. 343Mailhot, B., Gardete, J.L., (1992) Macromolecules, 25, p. 4127Chen, C.C., Habibullah, M., Sauer, J.A., (1983) J. Appl. Polym. Sci., p. 391McNeill, I.C., Razumovskii, L.P., Gol'dberg, V.M., Zaikov, G.E., (1994) Polym. Degrad. Stab., 45, p. 47Rivaton, A., Gardette, J.L., (1998) Angew. Makromol. Chem., 261, p. 173Mailhot, B., Gardette, J.L., (1996) Macromolecules, 25, p. 343Lemaire, J., Gardette, J.L., Mailhot, B., Jouan, X., (1995) Current Trends in Polymers Photochemistry, p. 175. , N.S. Allen, M. Edge, I.R. Bellobono, E. Lelli (Eds.), Ellis Horwood Limited, New YorkScoponi, M., Gliglioni, C., (1997) Angew. Makromol. Chem., 252, p. 237Scoponi, M., Pradella, F., Kaczmarek, H., Amadelli, R., Carassiti, V., (1996) Polymer, 37, pp. 903-916Posṕšil, J., Horák, Z., Kruliš, Z., Nešpůrek, S., Kuroda, S., (1999) Polym. Degrad. Stab., 65, p. 405Feng, H.Q., Feng, Z.L., Ruan, H.Z., (1992) Macromolecules, 25, p. 5981Cowie, J.M.G., Harris, S., Ribelles, J.L.G., Meseguer, J.M., Romero, F., Torregrosa, C., (1999) Macromolecules, 32, p. 4430Kryszewski, M., Wandelt, M., Birch, D.J.S., Imhorf, R.E., North, A.M., Pethrich, R.A., (1982) Polym. Commun., 24, p. 73Audouin, L., Langlois, V., Verdu, J., de Bruijn, J.C.M., (1994) J. Mater. Sci, 29, pp. 369-383Birkinshaw, C., Buggy, M., Daly, S., O'Neill, M., (1988) Polym. Degrad. Stab., 22, p. 285Varughese, S., Tripathy, D.K., (1992) Polym. Degrad. Stab., 38, p. 7Dole, P., Chauchard, J., (1995) Polym. Degrad. Stab., 47, p. 441Dole, P., Chauchard, J., (1995) Polym. Degrad. Stab., 47, p. 449Dole, P., Chauchard, J., (1994) Macromol. Chem. Phys., 195, p. 3949Saron, C., (2001), Master Thesis, Instituto de Qúmica, Universidade Estadual de CampinasLacoste, J., Delor, F., Pilichowski, J.F., Ssingh, R.P., Prasad, A.V., Sivaram, S., (1996) J. Appl. Polym. Sci., 59, p. 953Kreibich, U.T., Richard, R., Batzer, H., (1985) Polymere Werkstoffe, 1, p. 303. , (Ed.), Georg Thieme Verlag, Stuttgar

    Modeling of the properties of plasticized poly(3-hydroxybutyrate) as a function of aging time and plasticizer content

    No full text
    Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer synthetized by microorganisms from renewable feedstocks, and is a promising alternative for the replacement of polymers from non-renewable sources. However, this polymer undergoes physical aging, becoming brittle. The plasticization of PHB has been widely reported in the literature as a strategy for overcoming this problem. In this work, we analyze the effects of the amount of plasticizer and time on the extent of aging, by evaluating the changes in the mechanical, dynamic mechanical and thermal properties of formulations of PHB and triethyl citrate (TEC) at room temperature. Formulations with a variable mass fraction of TEC were prepared by melt extrusion, followed by the injection molding of specimens. The extent of aging of the formulations at room temperature was evaluated by analyzing specimens at a predetermined frequency for up to three months. The magnitude of the variation in their properties was larger at the beginning, and underwent exponential decay with aging time. Aging resulted in embrittlement of the formulations, the loss of the capacity to dissipate mechanical energy, and significant changes in the relaxation spectra. The effects of aging on impact resistance were more pronounced as the TEC concentration increased. The dynamic mechanical behavior suggested phase separation in formulations richer in plasticizer, induced by secondary crystallization, which expels TEC from the crystalline structure. A linear model was used to describe and to predict the effects of aging and plasticizer content on the mechanical properties of the formulations25CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP444392/2014-9sem informação2015/25406-5; 2010/17804-

    Thermal Conductivity Of Pet/(ldpe/ai) Composites Determined By Mdsc

    No full text
    The heat capacity and the thermal conductivity of composites prepared from PET and LDPE containing aluminium particles dispersed in the polyolefin matrix, both obtained from recycled packaging, were measured in the temperature range from 20 to 100 °C using modulated DSC. The heat capacity of composites decreases with the increase of PET content and the thermal conductivity showed a very complex dependence on composition, attributed to morphological effects. © 2004 Elsevier Ltd. All rights reserved.236637643Godovsky, Y.K., (1992) Thermophysical Properties of Polymers, , SpringerThompson, E.V., Thermal properties (1989) Encyclopaedia of Polymer Science and Engineering, 16, p. 711. , Mark H.F. Wiley and SonsHands, D., Thermal properties (1999) Handbook of Polymer Testing, , R. Brown. Marcel DekkerChiu, J., Fair, P.G., Determination of thermal-conductivity by differential scanning calorimetry (1979) Thermochim. Acta, 34 (2), p. 267Sircar, K., Wells, J.L., Thermal-conductivity of elastomer vulcanizates by differential scanning calorimetry (1982) Rubber Chem. Technol., 55 (1), p. 191Merzlyakov, M., Schick, C., Thermal conductivity from dynamic response of DSC (2001) Thermochim. Acta, 377 (1-2), p. 183Marcus, S.M., Blaine, R.L., Thermal-conductivity of polymers, glasses and ceramics by modulated DSC (1994) Thermochim. Acta, 243 (2), p. 231Simon, S.L., Mckenna, G.B., Measurement of thermal conductivity using TMDSC: Solution to the heat flow problem (1999) J. Reinf. Plast. Comp., 18 (6), p. 559Isa, I.A.A., Jodeh, S.W., Thermal properties of automotive polymers III - Thermal characteristics and flammability of fire retardant polymers (2001) Mat. Res. Innov., 4 (2-3), p. 135Blaine, R.L., Marcus, S.M., Derivation of temperature-modulated DSC thermal conductivity equations (1998) J. Therm. Anal. Calorim., 54 (2), p. 467Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry, , ASTM E1958-98Lopes, C.M.A., (2003), PhD Thesis, Universidade Estadual de Campinas, Campinas, BrazilWilski, H., Heat capacity of high polymers (1975) Polymer Handbook Second Ed., , J. Brandrup, & E.H. Immergut. John Wiley & SonsPrivalko, V.P., Novikov, V.V., (1995) The Science of Heterogeneous Polymers, , Wiley and SonsTavman, I.H., Thermal and mechanical properties of aluminum powder filled high density polyethylene composites (1996) J. Appl. Polym. Sci., 62 (12), p. 2161Okamoto, S., Ishida, H., Nondestructive evaluation of the three-dimensional morphology of polyethylene/polystyrene blends by thermal conductivity (2001) Macromolecules, 34 (21), p. 7392Agari, Y., Ueda, A., Omura, Y., Nagai, S., Thermal diffusivity and conductivity of PMMA/PC blends (1997) Polymer, 38 (4), p. 801Agari, Y., Shimada, M., Ueda, A., Thermal diffusivity and conductivity of PS/PPO blends (1997) Polymer, 38 (11), p. 264

    In Situ Compatibilization Of Polystyrene And Polyurethane Blends By Using Poly(styrene-co-maleic Anhydride) As Reactive Compatibilizer

    No full text
    Blends of polystyrene (PS) and polyurethane (PU) elastomer were obtained by melt mixing, using poly(styrene-co-maleic anhydride) (SMA) containing 7 wt% of maleic anhydride groups as a reactive compatibilizer. Polyurethanes containing polyester flexible segments, PU-es, and polyether flexible segments, PU-et, were used. These polyurethanes were crosslinked with dicumyl peroxide or sulfur to improve their mechanical properties. The anhydride groups of SMA can react with the PU groups and form an in situ graft copolymer at the interface of the blends during their preparation. The rheological behavior was accompanied by torque versus time curves and an increase in the torque during the melt mixing was observed for all the reactive blends, indicating the occurrence of a reaction. Solubility tests, gel permeation chromatography, and scanning electronic microscopy confirmed the formation of a graft copolymer generated in situ during the melt blending. These results also indicate that this graft copolymer contains C-C bond between SMA and PU chains.821025142524Fox, D.W., Allen, R.B., Compatibility (1988) Encyclopedia of Polymer Science and Engineering, 2nd Ed., 3, p. 758. , Mark, H. F.Bikales, N. M.Overberger, C. G.Menges, G.Kroschwits, J. I., Eds.Wiley: New YorkLiu, N.C., Baker, W.E., (1992) Adv Polym Technol, 11, p. 249Lu, M., Paul, D.R., (1993) Polymer, 34, p. 1874Kalfoglou, N.K., Skafidas, D.S., Kallitsis, J., (1995) Polymer, 36, p. 4453Liu, N.C., Baker, W.E., Russel, K.E., (1990) J Appl Polym Sci, 41, p. 2285Triacca, V.J., Ziaee, S., Barlow, J.W., Keskkula, H., Paul, D.R., (1991) Polymer, 32, p. 1401Chiang, C.R., Chang, F.C., (1997) Polymer, 38, p. 4807Dedecker, K., Groeninckx, G., (1998) Polymer, 39, p. 4985Dedecker, K., Groeninckx, G., (1998) Polymer, 39, p. 5001Cho, K., Seo, K.H., Ahn, T.O., (1998) J Appl Polym Sci, 68, p. 1925Uniroyal Chemical Company, Inc. Catalogue: Vibrathane 5008, Adiprene FMUniroyal Chemical Co., Naugatuck, CTMolau, G.E., (1965) J Polym Sci Part A, 3, p. 4235Oshinski, A.J., Keskkula, H., Paul, D.R., (1992) Polymer, 33, p. 268Oshinski, A.J., Keskkula, H., Paul, D.R., (1992) Polymer, 33, p. 284Teselios, C.H., Bikiaris, D., Prinos, J., Panayiotou, C., (1997) J Appl Polym Sci, 64, p. 983Haponiuk, J.T., (1995) J Therm Anal, 43, p. 91Chang, F.-C., Yang, M.-Y., (1990) Polym Eng Sci, 30, p. 543Xu, S., Chen, B., Tang, T., Huang, B., (1999) Polymer, 40, p. 3399Xiao, F., Shen, D., Zhang, X., Hu, S., Xu, M., (1987) Polymer, 28, p. 2335Jiarui, S., Wei, Y., Shuihan, Z., (1996) Polym Prepr (Am Chem Soc Div Polym Chem), 37, p. 643Rätzsch, M., Pionteck, J., Rische, T., (1991) Makromol Chem Macromol Symp, 50, p. 203Santra, R.N., Roy, S., Tikku, V.K., Nando, G.B., (1995) Adv Polym Technol, 14, p. 59Stutz, H., Pötschke, P., Mierau, U., (1996) Macromol Symp, 112, p. 151Guégan, P., Macosko, C.W., Ishizone, T., Hirao, A., Nakahama, S., (1994) Macromolecules, 27, p. 4993Xanthos, M., Dagli, S.S., (1991) Polym Eng Sci, 31, p. 929Gaylord, N.G., Elayaperumal, P., (1983) J Polym Sci Polym Lett Ed, 21, p. 781Gaylord, N.G., Mehta, R., (1988) J Polym Sci Part A Polym Chem, 26, p. 1189Coran, A.Y., Vulcanization (1988) Encyclopedia of Polymer Science and Engineering, 2nd Ed., 17, p. 666. , Mark, H. F.Bikales, N. M.Overberger, C. G.Menges, G.Kroschwits, J. I., Eds.Wiley: New Yor
    corecore