27 research outputs found

    Nano-engineering polymer topographies for biological response manipulation of stem cells and bacteria

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física la Materia Condensada. Fecha de lectura: 26-09-2017Esta tesis tiene embargado el acceso al texto completo hasta el 26-03-201

    Mechanostability of the Fibrinogen Bridge between Staphylococcal Surface Protein ClfA and Endothelial Cell Integrin αVβ3

    Get PDF
    Binding of the Staphylococcus aureus surface protein clumping factor A (ClfA) to endothelial cell integrin αVβ3 plays a crucial role during sepsis, by causing endothelial cell apoptosis and loss of barrier integrity. ClfA uses the blood plasma protein fibrinogen (Fg) to bind to αVβ3 but how this is achieved at the molecular level is not known. Here we investigate the mechanical strength of the three-component ClfA-Fg-αVβ3 interaction on living bacteria, by means of single-molecule experiments. We find that the ClfA-Fg-αVβ3 ternary complex is extremely stable, being able to sustain forces (∼800 pN) that are much stronger than those of classical bonds between integrins and the Arg-Gly-Asp (RGD) tripeptide sequence (∼100 pN). Adhesion forces between single bacteria and αVβ3 are strongly inhibited by an anti-αVβ3 antibody, the RGD peptide, and the cyclic RGD peptide cilengitide, showing that formation of the complex involves RGD-dependent binding sites and can be efficiently inhibited by αVβ3 blockers. Collectively, our experiments favor a binding mechanism involving the extraordinary elasticity of Fg. In the absence of mechanical stress, RGD572-574 sequences in the Aα chains mediate weak binding to αVβ3, whereas under high mechanical stress exposure of cryptic Aα chain RGD95-97 sequences leads to extremely strong binding to the integrin. Our results identify an unexpected and previously undescribed force-dependent binding mechanism between ClfA and αVβ3 on endothelial cells, which could represent a potential target to fight staphylococcal bloodstream infections

    Single-cell fluidic force microscopy reveals stress- dependent molecular interactions in yeast mating

    Full text link
    Sexual agglutinins of the budding yeast Saccharomyces cerevisiae are proteins mediating cell aggregation during mating. Complementary agglutinins expressed by cells of opposite mating types “a” and “α” bind together to promote agglutination and facilitate fusion of haploid cells. By means of an innovative single-cell manipulation assay combining fluidic force microscopy with force spectroscopy, we unravel the strength of single specific bonds between a- and α-agglutinins (~100 pN) which require pheromone induction. Prolonged cell–cell contact strongly increases adhesion between mating cells, likely resulting from an increased expression of agglutinins. In addition, we highlight the critical role of disulfide bonds of the a- agglutinin and of histidine residue H273 of α-agglutinin. Most interestingly, we find that mechanical tension enhances the interaction strength, pointing to a model where physical stress induces conformational changes in the agglutinins, from a weak-binding folded state, to a strong-binding extended state. Our single-cell technology shows promises for under- standing and controlling the complex mechanism of yeast sexuality

    Nano-engineering polymer topographies for biological response manipulation of stem cell and bacteria

    No full text
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Fecha de lectura: 26-9-2017

    Mechanostability of the Fibrinogen Bridge between Staphylococcal Surface Protein ClfA and Endothelial Cell Integrin αVβ3

    No full text
    Binding of the Staphylococcus aureus surface protein clumping factor A (ClfA) to endothelial cell integrin αVβ3 plays a crucial role during sepsis, by causing endothelial cell apoptosis and loss of barrier integrity. ClfA uses the blood plasma protein fibrinogen (Fg) to bind to αVβ3 but how this is achieved at the molecular level is not known. Here we investigate the mechanical strength of the three-component ClfA-Fg-αVβ3 interaction on living bacteria, by means of single-molecule experiments. We find that the ClfA-Fg-αVβ3 ternary complex is extremely stable, being able to sustain forces (∼800 pN) that are much stronger than those of classical bonds between integrins and the Arg-Gly-Asp (RGD) tripeptide sequence (∼100 pN). Adhesion forces between single bacteria and αVβ3 are strongly inhibited by an anti-αVβ3 antibody, the RGD peptide, and the cyclic RGD peptide cilengitide, showing that formation of the complex involves RGD-dependent binding sites and can be efficiently inhibited by αVβ3 blockers. Collectively, our experiments favor a binding mechanism involving the extraordinary elasticity of Fg. In the absence of mechanical stress, RGD572−574 sequences in the Aα chains mediate weak binding to αVβ3, whereas under high mechanical stress exposure of cryptic Aα chain RGD95−97 sequences leads to extremely strong binding to the integrin. Our results identify an unexpected and previously undescribed force-dependent binding mechanism between ClfA and αVβ3 on endothelial cells, which could represent a potential target to fight staphylococcal bloodstream infections

    Fast chemical force microscopy demonstrates that glycopeptidolipids define nanodomains of varying hydrophobicity on mycobacteria

    No full text
    Mycobacterium abscessus is an emerging multidrug-resistant bacterial pathogen causing severe lung infections in cystic fibrosis patients. A remarkable trait of this mycobacterial species is its ability to form morphologically smooth (S) and rough (R) colonies. The S-to-R transition is caused by the loss of glycopeptidolipids (GPLs) in the outer layer of the cell envelope and correlates with an increase in cording and virulence. Despite the physiological and medical importance of this morphological transition, whether it involves changes in cell surface properties remains unknown. Herein, we combine recently developed quantitative imaging (QI) atomic force microscopy (AFM) with hydrophobic tips to quantitatively map the surface structure and hydrophobicity of M. abscessus at high spatiotemporal resolution, and to assess how these properties are modulated by the S-to-R transition and by treatment with an inhibitor of the mycolic acid transporter MmpL3. We discover that loss of GPLs leads to major modifications in surface hydrophobicity, without any apparent change in cell surface ultrastructure. While R bacilli are homogeneously hydrophobic, S bacilli feature unusual variations of nanoscale hydrophobic properties. These previously undescribed cell surface nanodomains are likely to play critical roles in bacterial adhesion, aggregation, phenotypic heterogeneity and transmission, and in turn in virulence and pathogenicity. Our study also suggests that MmpL3 inhibitors show promise in nanomedicine as chemotherapeutic agents to interfere with the highly hydrophobic nature of the mycobacterial cell wall. The advantages of QI-AFM with hydrophobic tips are the ability to map chemical and structural properties simultaneously and at high resolution, applicable to a wide range of biosystems

    Bacterial pathogens under high-tension: Staphylococcus aureus adhesion to von Willebrand factor is activated by force

    No full text
    Attachment of Staphylococcus aureus to platelets and endothelial cells involves binding of bacterial cell sur-face protein A (SpA) to the large plasma glycoprotein von Willebrand factor (vWF). SpA-mediated bacterial adhesion to vWF is controlled by fluid shear stress, yet little is currently known about the underlying molecu-lar mechanism. In a recent publication, we showed that the SpA-vWF interaction is tightly regulated by mechanical force. By means of single-molecule pulling experiments, we found that the SpA-vWF bond is ex-tremely strong, being able to resist forces which large-ly outperform the strength of typical receptor-ligand bonds. In line with flow experiments, strong adhesion is activated by mechanical tension. These results sug-gest that force induces conformational changes in the vWF molecule, from a globular to an extended state, leading to the exposure of cryptic binding sites to which SpA strongly binds. This force-sensitive mecha-nism may largely contribute to help S. aureus bacteria to resist shear stress of flowing blood during infection

    Stress-Induced Catch-Bonds to Enhance Bacterial Adhesion

    No full text
    Physical forces have a profound influence on bacterial cell physiology and disease. A striking example is the formation of catch-bonds that reinforce under mechanical stress. While mannose-binding by the Escherichia coli FimH adhesin has long been the only thoroughly studied microbial catch-bond, it has recently become clear that proteins from other species, such as staphylococci, are also engaged in such stress-dependent interactions

    What makes bacterial pathogens so sticky?

    No full text
    Pathogenic bacteria use a variety of cell surface adhesins to promote binding to host tissues and protein-coated biomaterials, as well as cell-cell aggregation. These cellular interactions represent the first essential step that leads to host colonization and infection. Atomic force microscopy (AFM) has greatly contributed to increase our understanding of the specific interactions at play during microbial adhesion, down to the single-molecule level. A key asset of AFM is that adhesive interactions are studied under mechanical force, which is highly relevant as surface-attached pathogens are often exposed to physical stresses in the human body. These studies have identified sophisticated binding mechanisms in adhesins, which represent promising new targets for antiadhesion therapy

    Nanonewton forces between Staphylococcus aureus surface protein IsdB and vitronectin

    No full text
    Single-molecule experiments have recently revealed that the interaction between staphylococcal surface proteins and their ligands can be extremely strong, equivalent to the strength of covalent bonds. Here, we report on the unusually high binding strength between Staphylococcus aureus iron-regulated surface determinant B (IsdB) and vitronectin (Vn), an essential human blood protein known to interact with bacterial pathogens. The IsdB–Vn interaction is dramatically strengthened by mechanical tension, with forces up to 2000 pN at a loading rate of 105 pN s−1. In line with this, flow experiments show that IsdB-mediated bacterial adhesion to Vn is enhanced by fluid shear stress. The stress-dependent binding of IsdB to Vn is likely to play a role in promoting bacterial adhesion to human cells under fluid shear stress conditions
    corecore