7 research outputs found
Chapter Electromagnetic Sensing Techniques for Non-Destructive Diagnosis of Civil Engineering Structures
Environmental policy & protocol
Electromagnetic Sensing Techniques for Non-Destructive Diagnosis of Civil Engineering Structures
Environmental policy & protocol
Advanced Research in Seismic Resilience of Structures and Infrastructures
Dear Colleagues,
In recent years, several countries have experienced heavy damages produced by earthquakes on existing structures designed considering only gravity loads. In some cases, new structures designed according to recent international seismic codes have also exhibited inadequate levels of seismic performance, especially in terms of serviceability limit state. Moreover, most economic loss associated to earthquakes is often strongly correlated to damage of nonstructural elements. As structural vulnerability contributes to raising the seismic risk, a comprehensive model to quantify seismic resilience of structures is needed in order to estimate the capacity of integrated systems to rebound after severe earthquakes.
This Special Issue aims to collect high-quality papers on advanced research on seismic resilience of structures and infrastructures (including buildings, bridges, cultural heritage, strategic life lines, etc.) dealing with different topics. In particular, recent research on seismic input definition, influence of dynamic soil–structure interaction, structural retrofit, passive control of structures, structural health monitoring, damage detection, and new structural systems toward earthquake-resilient structures is welcome for this interdisciplinary Special Issue.
Prof. Dr. Felice Carlo Ponzo
Dr. Antonio Di Cesare
Dr. Rocco Ditommaso
Guest Editor
Vulnerabilità Sismica dei ponti in c.a.: studio del ponte “Musmeci” a Potenza
Il ponte sul Basento a Potenza, progettato da Sergio Musmeci e realizzato nel periodo compreso tra il 1969 e il 1972, con la sua ardita struttura costituisce uno straordinario esempio di scultura moderna in calcestruzzo armato, in cui i classici elementi di sostegno verticale (piloni) sono sostituiti da un’unica volta a curvatura variabile che sorregge l’intero impalcato. La particolare forma fa dell’opera un imponente e raffinato oggetto d’arte a scala urbana. L’età del ponte e il suo continuo ed incessante utilizzo hanno determinato l’esigenza di approfondire la conoscenza del suo grado di sicurezza nei confronti delle sollecitazioni di esercizio (traffico) e di tipo sismico, queste ultime non considerate all’epoca della progettazione della struttura. L’elevata complessità dell’opera in esame ha comportato un’attenta pianificazione delle indagini in situ,mirata al raggiungimento del livello di conoscenza più elevato possibile. La fase conoscitiva, iniziata con l’analisi della documentazione progettuale originale, è proseguita con l’esecuzione d’indagini svolte mediante la combinazione di tecniche classiche e tecniche innovative, quali il rilievo Laserscan 3D, indagini Georadar e misure Vibrazionali. La valutazione della sicurezza, globale e locale, è stata svolta mediante l’utilizzo di modelli numerici messi a punto e opportunamente calibrati considerando i risultati delle indagini. La metodologia di studio proposta, oltre a fornire una fotografia del grado di vulnerabilità della struttura oggetto di studio, definisce anche un possibile riferimento per la pianificazione delle indagini da compiere su opere simili a quella indagata nel presente lavor
Preliminary Results in the Design and Testing of Earthquake-Proof Glass-Aluminium Partition Walls
Recent years have seen an increasing demand in the use of glass partition walls in office buildings, with major concerns regarding their behaviour and safety in case of strong seismic events. This study illustrates the development of an innovative solution for aluminium-glass partition walls that can resist, without any damage, horizontal accelerations as those measured during strong earthquakes. The proposed solution is based on a highly dissipative interface rubber between the aluminium frame and the glass plate, the latter constituting the largest portion of the mass of the partition wall. During a seismic event the glass plate moves relatively to the aluminium frames, thus, activating a dissipative mechanism that is basically a scaled-down version of what is seen in rubber bearings used in seismic isolation. In this article the initial structural concept is presented, preliminary numerical analyses illustrated, the preparation of preliminary small-scale prototypes followed by full-scale prototypes, and the execution of shake-table tests to simulate extreme seismic events are discussed. It is shown that very encouraging structural performances can be achieved in a product that is economically comparable to currently non-earthquake proof solutions, without problems or limitations in its every-day use
Controlled deformability partition wall with vibration-induced energy dissipation
La presente invenzione si riferisce ad una parete divisoria realizzata con pannelli preferibilmente in vetro. Essa si propone di risolvere i problemi inerenti tale tipologia di parete in occasione di un evento sismico consentendo ad essa di dissipare l'energia di vibrazione attraverso elementi costruttivi viscoelastici "PAD" che interagendo con elementi pattini a basso attrito consentono ai pannelli preferibilmente in vetro di muoversi in maniera controllata rispetto al telaio che li contiene.The present invention refers to a dividing wall made with panels preferably of glass. It aims to solve the problems of this type of wall during a seismic event by allowing it to dissipate the vibration energy through viscoelastic elements said "PAD" which interacting with low friction sliding elements allow the panels, preferably in glass, to move in a controlled manner with respect to the frame that contains them