6 research outputs found

    Biosignatures of Exposure/Transmission and Immunity.

    Get PDF
    A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission

    Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray.

    Get PDF
    The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches

    Correlation coefficient results for all protein pairs

    No full text
    Protein targets are grouped by antigen, and all possible combinations within each antigen group are shown. This spreadsheet supports the paper, "Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray"

    Detail of expressed protein targets

    No full text
    A spreadsheet containing a key to the simplified nomenclature used for specific proteins in text, as outlined in "Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray"
    corecore