20 research outputs found

    Numerical and experimental estimation of void fraction of supersonic steam jet in sub-cooled water: a comparative study

    Get PDF
    Gas-liquid two-phase flows occur in a range of chemical, process, petroleum, metallurgical and power industries. Void fraction is a principal parameter. An effort has been made here to perform a comparative study in which the approximate void fraction of the supersonic steam jet into the sub-cooled water has been measured both numerically as well as experimentally. On a numerical basis, Direct Contact Condensation (DCC) model and on an experimental basis, Electrical Resistance Tomography (ERT) has been used for computing the void fraction. On an experimental basis, the overestimation is nearly 45% when the surrounding water temperature is 30°C with a steam inlet pressure of 1.5 bars and the over-estimation goes up to 83% at 60°C and 3.0 bars. The void fraction computed by the use of the DCC model at 1.5 bars and 300C is 17.66% whereas the computed void fraction at 3.0 bars of inlet pressure and 600C of water temperature is 31.1%

    D2D-V2X-SDN: Taxonomy and Architecture towards 5G Mobile Communication System

    Get PDF
    In the era of information society and 5G networks, cars are extremely important mobile information carriers. In order to meet the needs of multi-scenario business requirements such as vehicle assisted driving and in-vehicle entertainment, cars need to interact with the outside world. This interconnection and data transmission process is usually called vehicular communication (V2X, Vehicle-to-Everything). Device-to-device (D2D) communication not only has partial nature of communication, but also alleviate the current problem of spectrum scarcity of resources. The application of D2D communication in V2X can meet the requirements of high reliability and low latency, but resource reuse also brings interference. Software-defined networking (SDN) provides an optimal solution for interoperability and flexibility between the V2X and D2D communication. This paper reviews the integration of D2D and V2X communication from the perspective of SDN. The state-of-the-art and architectures of D2D-V2X were discussed. The similarity, characteristics, routing control, location management, patch scheduling and recovery is described. The integrated architecture reviewed in this paper can solve the problems of routing management, interference management and mobile management. It also overcome the disconnection problem between the D2D-V2X in terms of SDN and provides some effective solutions.- Qatar National Research Fund (QNRF) - [UREP27-020-1-003]. - Ministry of Higher Education, Malaysia (MOHE) - [FRGS/1/2018/ICT02/UKM/02/6]. - National Research Foundation of Korea (NRF) - [2019R1C1C1007277]. - Taif University (TU)- [TURSP-2020/260]

    A Comprehensive Mathematical Model for SARS-CoV-2 in Caputo Derivative

    No full text
    In the present work, we study the COVID-19 infection through a new mathematical model using the Caputo derivative. The model has all the possible interactions that are responsible for the spread of disease in the community. We first formulate the model in classical differential equations and then extend it into fractional differential equations using the definition of the Caputo derivative. We explore in detail the stability results for the model of the disease-free case when R01. We show that the model is stable locally when R01. We give the result that the model is globally asymptotically stable whenever R0≤1. Further, to estimate the model parameters, we consider the real data of the fourth wave from Pakistan and provide a reasonable fitting to the data. We estimate the basic reproduction number for the proposed data to be R0=1.0779. Moreover, using the real parameters, we present the numerical solution by first giving a reliable scheme that can numerically handle the solution of the model. In our simulation, we give the graphical results for some sensitive parameters that have a large impact on disease elimination. Our results show that taking into consideration all the possible interactions can describe COVID-19 infection

    A Comprehensive Mathematical Model for SARS-CoV-2 in Caputo Derivative

    No full text
    In the present work, we study the COVID-19 infection through a new mathematical model using the Caputo derivative. The model has all the possible interactions that are responsible for the spread of disease in the community. We first formulate the model in classical differential equations and then extend it into fractional differential equations using the definition of the Caputo derivative. We explore in detail the stability results for the model of the disease-free case when R0<1. We show that the model is stable locally when R0<1. We give the result that the model is globally asymptotically stable whenever R0≤1. Further, to estimate the model parameters, we consider the real data of the fourth wave from Pakistan and provide a reasonable fitting to the data. We estimate the basic reproduction number for the proposed data to be R0=1.0779. Moreover, using the real parameters, we present the numerical solution by first giving a reliable scheme that can numerically handle the solution of the model. In our simulation, we give the graphical results for some sensitive parameters that have a large impact on disease elimination. Our results show that taking into consideration all the possible interactions can describe COVID-19 infection

    Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis

    No full text
    In this paper, the problem of frequency regulation in the multi-area power systems with demand response, energy storage system (ESS) and renewable energy generators is studied. Dissimilarly to most studies in this field, the dynamics of all units in all areas are considered to be unknown. Furthermore time-varying solar radiation, wind speed dynamics, multiple load changes, demand response (DR), and ESS are considered. A novel dynamic fractional-order model based on restricted Boltzmann machine (RBM) and deep learning contrastive divergence (CD) algorithm is presented for online identification. The controller is designed by the dynamic estimated model, error feedback controller and interval type-3 fuzzy logic compensator (IT3-FLC). The gains of error feedback controller and tuning rules of the estimated dynamic model are extracted through the fractional-order stability analysis by the linear matrix inequality (LMI) approach. The superiority of a schemed controller in contrast to the type-1 and type-2 FLCs is demonstrated in various conditions, such as time-varying wind speed, solar radiation, multiple load changes, and perturbed dynamics

    A Hybrid Predictive Type-3 Fuzzy Control for Time-Delay Multi-Agent Systems

    No full text
    In this paper, the consensus problem is addressed for multi-agent systems. The dynamics of each agent contain unknown uncertain/nonlinear terms and unknown time delays. A type-3 fuzzy logic system is developed to tackle the effect of unknown dynamics and design a hybrid controller. The policy scheme involves two control signals for the stabilization of the approximation and consensus error of each agent dynamic. To this end, based on the concept of the model predictive control approach, the constrained control laws are designed and updated at each time step. The simulations results portray the error signals. Feasibility, appropriate convergence, and proper transient response are the main merits of the suggested method

    Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings

    No full text
    The theory of fractional analysis has been a focal point of fascination for scientists in mathematical science, given its essential definitions, properties, and applications in handling real-life problems. In the last few decades, many mathematicians have shown their considerable interest in the theory of fractional calculus and convexity due to their wide range of applications in almost all branches of applied sciences, especially in numerical analysis, physics, and engineering. The objective of this article is to establish Hermite-Hadamard type integral inequalities by employing the k-Riemann-Liouville fractional operator and its refinements, whose absolute values are twice-differentiable h-convex functions. Moreover, we also present some special cases of our presented results for different types of convexities. Moreover, we also study how q-digamma functions can be applied to address the newly investigated results. Mathematical integral inequalities of this class and the arrangements associated have applications in diverse domains in which symmetry presents a salient role

    Some Hermite–Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings

    No full text
    The theory of fractional analysis has been a focal point of fascination for scientists in mathematical science, given its essential definitions, properties, and applications in handling real-life problems. In the last few decades, many mathematicians have shown their considerable interest in the theory of fractional calculus and convexity due to their wide range of applications in almost all branches of applied sciences, especially in numerical analysis, physics, and engineering. The objective of this article is to establish Hermite-Hadamard type integral inequalities by employing the k-Riemann-Liouville fractional operator and its refinements, whose absolute values are twice-differentiable h-convex functions. Moreover, we also present some special cases of our presented results for different types of convexities. Moreover, we also study how q-digamma functions can be applied to address the newly investigated results. Mathematical integral inequalities of this class and the arrangements associated have applications in diverse domains in which symmetry presents a salient role

    A New Data-Driven Control System for MEMSs Gyroscopes: Dynamics Estimation by Type-3 Fuzzy Systems

    No full text
    In this study, a novel data-driven control scheme is presented for MEMS gyroscopes (MEMS-Gs). The uncertainties are tackled by suggested type-3 fuzzy system with non-singleton fuzzification (NT3FS). Besides the dynamics uncertainties, the suggested NT3FS can also handle the input measurement errors. The rules of NT3FS are online tuned to better compensate the disturbances. By the input-output data set a data-driven scheme is designed, and a new LMI set is presented to ensure the stability. By several simulations and comparisons the superiority of the introduced control scheme is demonstrated

    A New Data-Driven Control System for MEMSs Gyroscopes: Dynamics Estimation by Type-3 Fuzzy Systems

    No full text
    In this study, a novel data-driven control scheme is presented for MEMS gyroscopes (MEMS-Gs). The uncertainties are tackled by suggested type-3 fuzzy system with non-singleton fuzzification (NT3FS). Besides the dynamics uncertainties, the suggested NT3FS can also handle the input measurement errors. The rules of NT3FS are online tuned to better compensate the disturbances. By the input-output data set a data-driven scheme is designed, and a new LMI set is presented to ensure the stability. By several simulations and comparisons the superiority of the introduced control scheme is demonstrated
    corecore