889 research outputs found
Runaway of Line-Driven Winds Towards Critical and Overloaded solutions
Line-driven winds from hot stars and accretion disks are thought to adopt a
unique, critical solution which corresponds to maximum mass loss rate and a
particular velocity law. We show that in the presence of negative velocity
gradients, radiative-acoustic (Abbott) waves can drive shallow wind solutions
towards larger velocities and mass loss rates. Perturbations introduced
downstream from the wind critical point lead to convergence towards the
critical solution. By contrast, low-lying perturbations cause evolution towards
a mass-overloaded solution, developing a broad deceleration region in the wind.
Such a wind differs fundamentally from the critical solution. For sufficiently
deep-seated perturbations, overloaded solutions become time-dependent and
develop shocks and shells.Comment: Latex, 2 postscript figures Astrophysical Journal Letters, in pres
Nonlocal radiative coupling in non monotonic stellar winds
There is strong observational evidence of shocks and clumping in
radiation-driven stellar winds from hot, luminous stars. The resulting non
monotonic velocity law allows for radiative coupling between distant locations,
which is so far not accounted for in hydrodynamic wind simulations. In the
present paper, we determine the Sobolev source function and radiative line
force in the presence of radiative coupling in spherically symmetric flows,
extending the geometry-free formalism of Rybicki and Hummer (1978) to the case
of three-point coupling, which can result from, e.g., corotating interaction
regions, wind shocks, or mass overloading. For a simple model of an overloaded
wind, we find that, surprisingly, the flow decelerates at all radii above a
certain height when nonlocal radiative coupling is accounted for. We discuss
whether radiation-driven winds might in general not be able to re-accelerate
after a non monotonicity has occurred in the velocity law.Comment: accepted by A&A, 8 pages, 4 figure
An Extensive Collection of Stellar Wind X-ray Source Region Emission Line Parameters,Temperatures, Velocities, and Their Radial Distributions as Obtained from Chandra Observations of 17 OB Stars
Chandra high energy resolution observations have now been obtained from
numerous non-peculiar O and early B stars. The observed X-ray emission line
properties differ from pre-launch predictions, and the interpretations are
still problematic. We present a straightforward analysis of a broad collection
of OB stellar line profile data to search for morphological trends. X-ray line
emission parameters and the spatial distributions of derived quantities are
examined with respect to luminosity class. The X-ray source locations and their
corresponding temperatures are extracted by using the He-like f/i line ratios
and the H-like to He-like line ratios respectively. Our luminosity class study
reveals line widths increasing with luminosity. Although the majority of the OB
emission lines are found to be symmetric, with little central line
displacement, there is evidence for small, but finite, blue-ward line-shifts
that also increase with luminosity. The spatial X-ray temperature distributions
indicate that the highest temperatures occur near the star and steadily
decrease outward. This trend is most pronounced in the OB supergiants. For the
lower density wind stars, both high and low X-ray source temperatures exist
near the star. However, we find no evidence of any high temperature X-ray
emission in the outer wind regions for any OB star. Since the temperature
distributions are counter to basic shock model predictions, we call this the
"near-star high-ion problem" for OB stars. By invoking the traditional OB
stellar mass loss rates, we find a good correlation between the fir-inferred
radii and their associated X-ray continuum optical depth unity radii. We
conclude by presenting some possible explanations to the X-ray source problems
that have been revealed by this study.Comment: Published in 2007, ApJ, 668, 456. An Erratum scheduled for
publication in 2008, ApJ, 680, is included as an Appendix. The Erratum
corrects some tabulated data in 5 tables and 2 figure
Statistical properties of antisymmetrized molecular dynamics for non-nucleon-emission and nucleon-emission processes
Statistical properties of the antisymmetrized molecular dynamics (AMD) are
classical in the case of nucleon emission processes, while they are quantum
mechanical for the processes without nucleon emission. We first clarify that
there coexist mutually opposite two statistics in the AMD framework: One is the
classical statistics of the motion of wave packet centroids and the other is
the quantum statistics of the motion of wave packets which is described by the
AMD wave function. We prove the classical statistics of wave packet centroids
by using the framework of the microcanonical ensemble of the nuclear system. We
show that the quantum statistics of wave packets emerges from the classical
statistics of wave packet centroids. It is emphasized that the temperature of
the classical statistics of wave packet centroids is different from the
temperature of the quantum statistics of wave packets. We then explain that the
statistical properties of AMD for nucleon emission processes are classical
because nucleon emission processes in AMD are described by the motion of wave
packet centroids. When we improve the description of the nucleon emission
process so as to take into account the momentum fluctuation due to the wave
packet spread, the AMD statistical properties for nucleon emission processes
change drastically into quantum statistics. Our study of nucleon emission
processes can be conversely regarded as giving another kind of proof of the
fact that the statistics of wave packets is quantum mechanical while that of
wave packet centroids is classical.Comment: 20 pages, LaTeX with revtex and epsf, uuenocded postscript figures,
postscript version available at http://pearl.scphys.kyoto-u.ac.jp/~ono
The Effect of Porosity on X-ray Emission Line Profiles from Hot-Star Winds
We investigate the degree to which the nearly symmetric form of X-ray
emission lines seen in Chandra spectra of early-type supergiant stars could be
explained by a possibly porous nature of their spatially structured stellar
winds. Such porosity could effectively reduce the bound-free absorption of
X-rays emitted by embedded wind shocks, and thus allow a more similar
transmission of red- vs. blue-shifted emission from the back vs. front
hemispheres. For a medium consisting of clumps of size l and volume filling
factor f, in which the `porosity length' h=l/f increases with local radius as h
= h' r, we find that a substantial reduction in wind absorption requires a
quite large porosity scale factor h' > 1, implying large porosity lengths h >
r. The associated wind structure must thus have either a relatively large scale
l~ r, or a small volume filling factor f ~ l/r << 1, or some combination of
these. The relatively small-scale, moderate compressions generated by intrinsic
instabilities in line-driving seem unlikely to give such large porosity
lengths, leaving again the prospect of instead having to invoke a substantial
(ca. factor 5) downward revision in assumed mass-loss rates.Comment: 6 pages in apj-emulate; 3 figures; submitted to Ap
A Simple Scaling Analysis of X-ray Emission and Absorption in Hot-Star Winds
We present a simple analysis of X-ray emission and absorption for hot-star
winds, designed to explore the natural scalings of the observed X-ray
luminosity with wind and sstellar properties. We show that an exospheric
approximation, in which all of the emission above the optical depth unity
radius escapes the wind, reproduces very well the detailed expression for
radiation transport through a spherically symmetric wind. Using this
approximation we find that the X-ray luminosity scales naturally with the
wind density parameter \Mdot/\vinf, obtaining L_x \sim (\Mdot/\vinf)^2 for
optically thin winds, and L_x \sim (\Mdot/\vinf)^{1+s} for optically thick
winds with an X-ray filling factor that varies in radius as . These
scalings with wind density contrast with the commonly inferred empirical
scalings of X-ray luminosity with bolometric luminosity . The
empirically derived linear scaling of for thick winds can
however be reproduced, through a delicate cancellation of emission and
absorption, if one assumes modest radial fall-off in the X-ray filling factor
( or , depending on details of the secondary
scaling of wind density with luminosity). We also explore the nature of the
X-ray spectral energy distribution in the context of this model, and find that
the spectrum is divided into a soft, optically thick part and a hard, optically
thin part. Finally, we conclude that the energy-dependent emissivity must have
a high-energy cut-off, corresponding to the maximum shock energy, in order to
reproduce the general trends seen in X-ray spectral energy distributions of hot
stars.Comment: 16 pages, 2 figures, requiress aaspp4.sty, accepted by Astrophysical
Journal, to appear in the Aug 10, 1999 issue. Several minor changes have been
made at the suggestion of the referee. We have added an appendix in which we
consider winds with beta-velocity laws, rather than simply constant
velocitie
Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates
Context: The mass-loss rate is a key parameter of massive stars. Adequate
stellar atmosphere models are required for spectral analyses and mass-loss
determinations. Present models can only account for the inhomogeneity of
stellar winds in the approximation of small-scale structures that are optically
thin. This treatment of ``microclumping'' has led to reducing empirical
mass-loss rates by factors of two and more. Aims: Stellar wind clumps can be
optically thick in spectral lines. We investigate how this ``macroclumping''
impacts on empirical mass-loss rates. Methods: The Potsdam Wolf-Rayet (PoWR)
model atmosphere code is generalized in the ``formal integral'' to account for
clumps that are not necessarily optically thin. Results: Optically thick clumps
reduce the effective opacity. This has a pronounced effect on the emergent
spectrum. Our modeling for the O-type supergiant zeta Puppis reveals that the
optically thin H-alpha line is not affected by wind porosity, but that the PV
resonance doublet becomes significantly weaker when macroclumping is taken into
account. The reported discrepancies between resonance-line and
recombination-line diagnostics can be resolved entirely with the macroclumping
modeling without downward revision of the mass-loss rate. Conclusions:
Mass-loss rates inferred from optically thin emission, such as the H-alpha line
in O stars, are not influenced by macroclumping. The strength of optically
thick lines, however, is reduced because of the porosity effects. Therefore,
neglecting the porosity in stellar wind modeling can lead to underestimating
empirical mass-loss rates.Comment: A&A (in press), see full abstract in the tex
High resolution X-ray spectroscopy of bright O type stars
Archival X-ray spectra of the four prominent single, non-magnetic O stars
Zeta Pup, Zeta Ori, Ksi Per and Zeta Oph, obtained in high resolution with
Chandra HETGS/MEG have been studied. The resolved X-ray emission line profiles
provide information about the shocked, hot gas which emits the X-radiation, and
about the bulk of comparably cool stellar wind material which partly absorbs
this radiation. In this paper, we synthesize X-ray line profiles with a model
of a clumpy stellar wind. We find that the geometrical shape of the wind
inhomogeneities is important: better agreement with the observations can be
achieved with radially compressed clumps than with spherical clumps. The
parameters of the model, i.e. chemical abundances, stellar radius, mass-loss
rate and terminal wind velocity, are taken from existing analyses of UV and
optical spectra of the programme stars. On this basis, we also calculate the
continuum-absorption coefficient of the cool-wind material, using the Potsdam
Wolf-Rayet (PoWR) model atmosphere code. The radial location of X-ray emitting
gas is restricted from analysing the fir line ratios of helium-like ions. The
only remaining free parameter of our model is the typical distance between the
clumps; here, we assume that at any point in the wind there is one clump
passing by per one dynamical time-scale of the wind. The total emission in a
model line is scaled to the observation. There is a good agreement between
synthetic and observed line profiles. We conclude that the X-ray emission line
profiles in O stars can be explained by hot plasma embedded in a cool wind
which is highly clumped in the form of radially compressed shell fragments.Comment: a typo corrected, 14 pages, MNRAS, in pres
The assembly history of the milky way nuclear star cluster
We study the assembly history of the nuclear star cluster in the Milky Way. Dense nuclear star clusters form distinct components in ~75% of nearby galaxies. Because the Milky Way nuclear star cluster is at a distance of only 8 kpc, we can spatially resolve its stellar populations and kinematics much better than possible in external galaxies.
We study the large-scale stellar kinematics using long-slit spectroscopic data in the near-infrared. We extract stellar kinematic maps from the integrated light, and detect the complex kinematic structure of the star cluster. We set up dynamical models to derive the cluster’s mass.
Further, we study stellar populations using integral-field spectroscopic data. From these data we extract more than 1,000 spectra from individual stars. We study the spatial distribution of young and old stars, and the metallicity distribution of cool stars.
We found indications for two different formation mechanisms of the Milky Way nuclear star cluster. On the one hand, gas was accreted to the Galaxy’s centre and stars formed in-situ. On the other hand, stars formed in star clusters outside the centre. These star clusters fell into the Galaxy’s nucleus and contributed to the assembly of the Milky Way nuclear star cluster
- …