1,103 research outputs found

    PSS56 PRESCRIPTION REFILLS AND HEALTH CARE COSTS ASSOCIATED WITH TOPICAL METRONIDAZOLE IN MEDICAID ENROLLED PATIENTS WITH ROSACEA

    Get PDF

    Charged black rings in supergravity with a single non-zero gauge field

    Full text link
    General charged black ring solution with two angular momenta, a charge and a dipole charge is found by the inverse scattering method. The solution is presented in a relatively concise form in which its symmetries are manifest. The regularity conditions are found and the physical characteristics of the regular solution are expressed via its parameters.Comment: Misprints corrected, references added, JHEP forma

    Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses

    Get PDF
    The Cooperative Patent Classifications (CPC) jointly developed by the European and US Patent Offices provide a new basis for mapping and portfolio analysis. This update provides an occasion for rethinking the parameter choices. The new maps are significantly different from previous ones, although this may not always be obvious on visual inspection. Since these maps are statistical constructs based on index terms, their quality--as different from utility--can only be controlled discursively. We provide nested maps online and a routine for portfolio overlays and further statistical analysis. We add a new tool for "difference maps" which is illustrated by comparing the portfolios of patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591; http://link.springer.com/article/10.1007/s11192-017-2449-

    Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level

    Get PDF
    We provide a comparative study of the fine tuning amount (Delta) at the two-loop leading log level in supersymmetric models commonly used in SUSY searches at the LHC. These are the constrained MSSM (CMSSM), non-universal Higgs masses models (NUHM1, NUHM2), non-universal gaugino masses model (NUGM) and GUT related gaugino masses models (NUGMd). Two definitions of the fine tuning are used, the first (Delta_{max}) measures maximal fine-tuning wrt individual parameters while the second (Delta_q) adds their contribution in "quadrature". As a direct result of two theoretical constraints (the EW minimum conditions), fine tuning (Delta_q) emerges as a suppressing factor (effective prior) of the averaged likelihood (under the priors), under the integral of the global probability of measuring the data (Bayesian evidence p(D)). For each model, there is little difference between Delta_q, Delta_{max} in the region allowed by the data, with similar behaviour as functions of the Higgs, gluino, stop mass or SUSY scale (m_{susy}=(m_{\tilde t_1} m_{\tilde t_2})^{1/2}) or dark matter and g-2 constraints. The analysis has the advantage that by replacing any of these mass scales or constraints by their latest bounds one easily infers for each model the value of Delta_q, Delta_{max} or vice versa. For all models, minimal fine tuning is achieved for M_{higgs} near 115 GeV with a Delta_q\approx Delta_{max}\approx 10 to 100 depending on the model, and in the CMSSM this is actually a global minimum. Due to a strong (\approx exponential) dependence of Delta on M_{higgs}, for a Higgs mass near 125 GeV, the above values of Delta_q\approx Delta_{max} increase to between 500 and 1000. Possible corrections to these values are briefly discussed.Comment: 23 pages, 46 figures; references added; some clarifications (section 2

    Active inference, sensory attenuation and illusions.

    Get PDF
    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference and impaired movement--like schizophrenia and Parkinsonism--syndromes that implicate abnormal modulatory neurotransmission

    Algorithm for identifying and separating beats from arterial pulse records

    Get PDF
    BACKGROUND: This project was designed as an epidemiological aid-selecting tool for a small country health center with the general objective of screening out possible coronary patients. Peripheral artery function can be non-invasively evaluated by impedance plethysmography. Changes in these vessels appear as good predictors of future coronary behavior. Impedance plethysmography detects volume variations after simple occlusive maneuvers that may show indicative modifications in arterial/venous responses. Averaging of a series of pulses is needed and this, in turn, requires proper determination of the beginning and end of each beat. Thus, the objective here is to describe an algorithm to identify and separate out beats from a plethysmographic record. A secondary objective was to compare the output given by human operators against the algorithm. METHODS: The identification algorithm detected the beat's onset and end on the basis of the maximum rising phase, the choice of possible ventricular systolic starting points considering cardiac frequency, and the adjustment of some tolerance values to optimize the behavior. Out of 800 patients in the study, 40 occlusive records (supradiastolic- subsystolic) were randomly selected without any preliminary diagnosis. Radial impedance plethysmographic pulse and standard ECG were recorded digitizing and storing the data. Cardiac frequency was estimated with the Power Density Function and, thereafter, the signal was derived twice, followed by binarization of the first derivative and rectification of the second derivative. The product of the two latter results led to a weighing signal from which the cycles' onsets and ends were established. Weighed and frequency filters are needed along with the pre-establishment of their respective tolerances. Out of the 40 records, 30 seconds strands were randomly chosen to be analyzed by the algorithm and by two operators. Sensitivity and accuracy were calculated by means of the true/false and positive/negative criteria. Synchronization ability was measured through the coefficient of variation and the median value of correlation for each patient. These parameters were assessed by means of Friedman's ANOVA and Kendall Concordance test. RESULTS: Sensitivity was 97% and 91% for the two operators, respectively, while accuracy was cero for both of them. The synchronism variability analysis was significant (p < 0.01) for the two statistics, showing that the algorithm produced the best result. CONCLUSION: The proposed algorithm showed good performance as expressed by its high sensitivity. The correlation analysis demonstrated that, from the synchronism point of view, the algorithm performed the best detection. Patients with marked arrhythmic processes are not good candidates for this kind of analysis. At most, they would be singled out by the algorithm and, thereafter, to be checked by an operator

    Mass-Matching in Higgsless

    Full text link
    Modern extra-dimensional Higgsless scenarios rely on a mass-matching between fermionic and bosonic KK resonances to evade constraints from precision electroweak measurements. After analyzing all of the Tevatron and LEP bounds on these so-called Cured Higgsless scenarios, we study their LHC signatures and explore how to identify the mass-matching mechanism, the key to their viability. We find singly and pair produced fermionic resonances show up as clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged bosonic resonances are visible in the dilepton and leptonic WZ channels, respectively. A measurement of the resonance masses from these channels shows the matching necessary to achieve S0S\simeq 0. Moreover, a large single production of KK-fermion resonances is a clear indication of compositeness of SM quarks. Discovery reach is below 10 fb1^{-1} of luminosity for resonances in the 700 GeV range.Comment: 28 pages, 18 figure

    Values clarification in a decision aid about fertility preservation: does it add to information provision?

    Get PDF
    Background We aimed to evaluate the effect of a decision aid (DA) with information only compared to a DA with values clarification exercise (VCE), and to study the role of personality and information seeking style in DA-use, decisional conflict (DC) and knowledge. Methods Two scenario-based experiments were conducted with two different groups of healthy female participants. Dependent measures were: DC, knowledge, and DA-use (time spent, pages viewed, VCE used). Respondents were randomized between a DA with information only (VCE-) and a DA with information plus a VCE(VCE+) (experiment 1), or between information only (VCE-), information plus VCE without referral to VCE(VCE+), and information plus a VCE with specific referral to the VCE, requesting participants to use the VCE(VCE++) (experiment 2). In experiment 2 we additionally measured personality (neuroticism/conscientiousness) and information seeking style (monitoring/blunting). Results Experiment 1. There were no differences in DC, knowledge or DA-use between VCE- (n=70) and VCE+ (n=70). Both DAs lead to a mean gain in knowledge from 39% at baseline to 73% after viewing the DA. Within VCE+, VCE-users (n=32, 46%) reported less DC compared to non-users. Since there was no difference in DC between VCE- and VCE+, this is likely an effect of VCE-use in a self-selected group, and not of the VCE per se. Experiment 2. There were no differences in DC or knowledge between VCE- (n=65), VCE+ (n=66), VCE++ (n=66). In all groups, knowledge increased on average from 42% at baseline to 72% after viewing the DA. Blunters viewed fewer DA-pages (R=0.38, p<.001). More neurotic women were less certain (R=0.18, p<.01) and felt less supported in decision making (R=0.15, p<.05); conscientious women felt more certain (R=-0.15, p<.05) and had more knowledge after viewing the DA (R=0.15, p<.05). Conclusions Both DAs lead to increased knowledge in healthy populations making hypothetical decisions, and use of the VCE did not improve knowledge or DC. Personality characteristics were associated to some extent with DA-use, information seeking styles with aspects of DC. More research is needed to make clear recommendations regarding the need for tailoring of information provision to personality characteristics, and to assess the effect of VCE use in actual patients

    An electrically charged doubly spinning dipole black ring

    Full text link
    We present a new asymptotically flat, doubly spinning black ring of D = 5 Einstein-Maxwell-dilaton theory with Kaluza-Klein dilaton coupling. Besides the mass and two angular momenta, the solution displays both electric charge and (magnetic) dipole charge. The class of solutions that are free from conical singularities is described by four parameters. We first derive the solution in six dimensions employing the inverse scattering method, thereby generalising the inverse-scattering construction by two of the current authors of Emparan's singly spinning dipole black ring. The novel black ring itself arises upon circle Kaluza-Klein reduction. We also compute the main physical properties and asymptotic charges of our new class of solutions. Finally, we present a five-parameter generalisation of our solution.Comment: v2: Improved presentation with new additions including plots of some physical charges and a new appendix with the most general five-parameter solution. Version to be published in JHE
    corecore