188 research outputs found

    Exploring Norms in Agile Software Teams

    Get PDF
    The majority of software developers work in teams and are thus influenced by team norms. Norms are shared expectations of how to behave and regulate the interaction between team members. Our aim of this study is to gain more knowledge about team norms in software teams and to increase the understanding of how norms influence teamwork in agile software development projects. We conducted a study of norms in four agile teams located in Norway and Malaysia. The analysis of 22 interviews revealed that we could extract a varied set of both injunctive and descriptive norms. Our results suggest that team norms have an important role in enabling team performance.acceptedVersio

    Solving Multi-choice Secretary Problem in Parallel: An Optimal Observation-Selection Protocol

    Full text link
    The classical secretary problem investigates the question of how to hire the best secretary from nn candidates who come in a uniformly random order. In this work we investigate a parallel generalizations of this problem introduced by Feldman and Tennenholtz [14]. We call it shared QQ-queue JJ-choice KK-best secretary problem. In this problem, nn candidates are evenly distributed into QQ queues, and instead of hiring the best one, the employer wants to hire JJ candidates among the best KK persons. The JJ quotas are shared by all queues. This problem is a generalized version of JJ-choice KK-best problem which has been extensively studied and it has more practical value as it characterizes the parallel situation. Although a few of works have been done about this generalization, to the best of our knowledge, no optimal deterministic protocol was known with general QQ queues. In this paper, we provide an optimal deterministic protocol for this problem. The protocol is in the same style of the 1e1\over e-solution for the classical secretary problem, but with multiple phases and adaptive criteria. Our protocol is very simple and efficient, and we show that several generalizations, such as the fractional JJ-choice KK-best secretary problem and exclusive QQ-queue JJ-choice KK-best secretary problem, can be solved optimally by this protocol with slight modification and the latter one solves an open problem of Feldman and Tennenholtz [14]. In addition, we provide theoretical analysis for two typical cases, including the 1-queue 1-choice KK-best problem and the shared 2-queue 2-choice 2-best problem. For the former, we prove a lower bound 1O(ln2KK2)1-O(\frac{\ln^2K}{K^2}) of the competitive ratio. For the latter, we show the optimal competitive ratio is 0.372\approx0.372 while previously the best known result is 0.356 [14].Comment: This work is accepted by ISAAC 201

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription

    Wild chimpanzees modify modality of gestures according to the strength of social bonds and personal network size

    Get PDF
    Primates form strong and enduring social bonds with others and these bonds have important fitness consequences. However, how different types of communication are associated with different types of social bonds is poorly understood. Wild chimpanzees have a large repertoire of gestures, from visual gestures to tactile and auditory gestures. We used social network analysis to examine the association between proximity bonds (time spent in close proximity) and rates of gestural communication in pairs of chimpanzees when the intended recipient was within 10 m of the signaller. Pairs of chimpanzees with strong proximity bonds had higher rates of visual gestures, but lower rates of auditory long-range and tactile gestures. However, individual chimpanzees that had a larger number of proximity bonds had higher rates of auditory and tactile gestures and lower rates of visual gestures. These results suggest that visual gestures may be an efficient way to communicate with a small number of regular interaction partners, but that tactile and auditory gestures may be more effective at communicating with larger numbers of weaker bonds. Increasing flexibility of communication may have played an important role in managing differentiated social relationships in groups of increasing size and complexity in both primate and human evolution

    Rasl11b Knock Down in Zebrafish Suppresses One-Eyed-Pinhead Mutant Phenotype

    Get PDF
    The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFβ/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep−/− mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors

    Uncharted waters: rare and unclassified cardiomyopathies characterized on cardiac magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) has undergone considerable technology advances in recent years, so that it is now entering into mainstream cardiac imaging practice. In particular, CMR is proving to be a valuable imaging tool in the detection, morphological assessment and functional assessment of cardiomyopathies. Although our understanding of this broad group of heart disorders continues to expand, it is an evolving group of entities, with the rarer cardiomyopathies remaining poorly understood or even unclassified. In this review, we describe the clinical and pathophysiological aspects of several of the rare/unclassified cardiomyopathies and their appearance on CMR

    Wide Crossing Technology for Pigeonpea Improvement

    Get PDF
    Pigeonpea (Cajanus cajan Millsp,) has ample genetic and genomic information now. It is endowed with rich germplasm in different gene pools. One of the easiest material to use in those are in the primary gene pool, which are closely related to cultivated pigeonpea. It is observed that species placed beyond the primary gene pool are a rich source of genetic variation. They contribute beneficial traits to pigeonpea such as pest or disease resistance, resistance to abiotic stresses, cytoplasmic male sterile systems (CMS) leading to yield improvement, and some novel traits such as homozygous pigeonpea lines. To effectively utilize the immense variation present in the secondary, tertiary, and quaternary gene pool of pigeonpea, a thorough knowledge of crossability and concerted effort is essential
    corecore