663 research outputs found

    Extreme privatization: A performance analysis of the Sandy Springs model

    Get PDF
    This paper examines the Sandy Springs-model, which is characterized by outsourcing the vast majority of municipal government services to the private sector. Privatization and outsourcing are widely seen as a way to deliver government services more effectively and efficiently, but few governments have privatized to the extent that Sandy Springs, Georgia, has done so. A performance analysis was conducted with Sandy Springs against neighboring municipal governments in northern Fulton County. The analysis compared expenditure per capita figures against the corresponding government output with an assigned points system for fiscal years 2008 through 2012. The analysis found that Sandy Springs does not have the most efficient or effective government in the sample, and was below average across the board. Further, cities that turned from a private sector-model to a more traditional model of service delivery found efficiency and performance gains

    Understanding the Rhythm of Breathing: So Near, Yet So Far

    Get PDF
    Breathing is an essential behavior that presents a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to both rapidly and slowly changing conditions, and how particular dysfunctions result in disease. We focus on recent advancements related to two essential sites for respiratory rhythmogenesis: (a) the preBotzinger Complex (preBotC) as the site for the generation of inspiratory rhythm and (b) the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG) as the site for the generation of active expiration

    Photoluminescence In Spray-pyrolyzed CdTe

    Get PDF
    We report very intense photoluminescence in spray-pyrolyzed CdTe at 77 K. We also notice striking similarities in the luminescence spectra, decay, and temperature dependence between CdTe and other thin-film semiconductors, which we interpret in terms of recombination at defect sites in intergranular regions

    Asymmetric control of inspiratory and expiratory phases by excitability in the respiratory network of neonatal mice in vitro

    Get PDF
    Rhythmic motor behaviours consist of alternating movements, e.g. swing-stance in stepping, jaw opening and closing during chewing, and inspiration-expiration in breathing, which must be labile in frequency, and in some cases, in the duration of individual phases, to adjust to physiological demands. These movements are the expression of underlying neural circuits whose organization governs the properties of the motor behaviour. To determine if the ability to operate over a broad range of frequencies in respiration is expressed in the rhythm generator, we isolated the kernel of essential respiratory circuits using rhythmically active in vitro slices from neonatal mice. We show respiratory motor output in these slices at very low frequencies (0.008 Hz), well below the typical frequency in vitro (similar to 0.2 Hz) and in most intact normothermic mammals. Across this broad range of frequencies, inspiratory motor output bursts remained remarkably constant in pattern, i.e. duration, peak amplitude and area. The change in frequency was instead attributable to increased interburst interval, and was largely unaffected by removal of fast inhibitory transmission. Modulation of the frequency was primarily achieved by manipulating extracellular potassium, which significantly affects neuronal excitability. When excitability was lowered to slow down, or in some cases stop, spontaneous rhythm, brief stimulation of the respiratory network with a glutamatergic agonist could evoke (rhythmic) motor output. In slices with slow (\u3c 0.02 Hz) spontaneous rhythms, evoked motor output could follow a spontaneous burst at short ( 60 s. We observed during inspiration a large magnitude (similar to 0.6 nA) outward current generated by Na(+)/K(+) ATPase that deactivated in 25-100 ms and thus could contribute to burst termination and the latency of evoked bursts but is unlikely to control the interburst interval. We propose that the respiratory network functions over a broad range of frequencies by engaging distinct mechanisms from those controlling inspiratory duration and pattern that specifically govern the interburst interval

    Interactions between respiratory oscillators in adult rats

    Get PDF
    Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i.e., cessation of both inspiration and active expiration. Depolarizing pFL neurons produced active expiration at rest, but not when inspiratory activity was suppressed by hyperpolarizing preBötC neurons. We conclude that in anesthetized adult rats active expiration is driven by the pFL but requires an additional form of network excitation, i.e., ongoing rhythmic preBötC activity sufficient to drive inspiratory motor output or increased chemosensory drive. The organization of this coupled oscillator system, which is essential for life, may have implications for other neural networks that contain multiple rhythm/pattern generators

    The Miami Heart Study (MiHeart) at Baptist Health South Florida, A Prospective Study of Subclinical Cardiovascular Disease and Emerging Cardiovascular Risk Factors in Asymptomatic Young and Middle-Aged Adults: The Miami Heart Study: Rationale and Design

    Get PDF
    Objective The Miami Heart Study (MiHeart) at Baptist Health South Florida is an ongoing, community-based, prospective cohort study aimed at characterizing the prevalence, characteristics, and prognostic value of diverse markers of early subclinical coronary atherosclerosis and of various potential demographic, psychosocial, and metabolic risk factors. We present the study objectives, detailed research methods, and preliminary baseline results of MiHeart. Methods MiHeart enrolled 2,459 middle-aged male and female participants from the general population of the Greater Miami Area. Enrollment occurred between May 2015 and September 2018 and was restricted to participants aged 40–65 years free of clinical cardiovascular disease (CVD). The baseline examination included assessment of demographics, lifestyles, medical history, and a detailed evaluation of psychosocial characteristics; a comprehensive physical exam; measurement of multiple blood biomarkers including measures of inflammation, advanced lipid testing, and genomics; assessment of subclinical coronary atherosclerotic plaque and vascular function using coronary computed tomography angiography, the coronary artery calcium score, carotid intima-media thickness, pulse wave velocity, and peripheral arterial tonometry; and other tests including 12-lead electrocardiography and assessment of pulmonary function. Blood samples were biobanked to facilitate future ancillary research. Results MiHeart enrolled 1,261 men (51.3%) and 1,198 women (48.7%). Mean age was 53 years, 85.6% participants were White and 47.4% were of Hispanic/Latino ethnicity. The study included 7% individuals with diabetes, 33% with hypertension, and 15% used statin therapy at baseline. Overweight or obese participants comprised 72% of the population and 3% were smokers. Median 10-year estimated atherosclerotic CVD risk using the Pooled Cohort Equations was 4%. Conclusion MiHeart will provide important, novel insights into the pathophysiology of early subclinical atherosclerosis and further our understanding of its role in the genesis of clinical CVD. The study findings will have important implications, further refining current cardiovascular prevention paradigms and risk assessment and management aproaches moving forward. KEYWORDS atherosclerosis; cardiovascular disease; cohort studies; coronary computed tomography; epidemiology; Hispanic/Latino; populations primary preventio

    Rhythmogenic neuronal networks, pacemakers, and k-cores

    Full text link
    Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.Comment: 4+ pages, 4 figures, submitted to Phys. Rev. Let

    α4* Nicotinic Receptors in preBotzinger Complex Mediate Cholinergic/Nicotinic Modulation of Respiratory Rhythm

    Get PDF
    Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9′A) of the nAChR α4 subunit; this mutation renders α4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations ∼100-fold lower in the homozygous L9′A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9′A mice, effects similar to those induced by 1 μm nicotine in wild-type mice. In L9′A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The α4*-selective nAChR antagonist dihydro-β-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional α4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional α4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn

    Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals

    Get PDF
    Breathing, chewing, and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models argues against canonical mechanisms for respiratory rhythm in neonatal rodents that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play a rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances-which are only available in the context of network activity-engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker. © 2010 Elsevier B.V
    corecore