16,470 research outputs found
Industrial Clustering and the Returns to Inventive Activity Canadian Biotechnology Firms, 1991-2000
We examine how industrial clustering affects biotechnology firms’ innovativeness, contrasting similar firms not located in clusters or located in clusters that are or are not focused on the firm’s technological specialization. Using detailed firm level data, we find clustered firms are eight times more innovative than geographically remote firms, with largest effects for firms located in clusters strong in their own specialization. For firms located in a cluster strong in their specialization we also find that R&D productivity is enhanced by a firm’s own R&D alliances and also by the R&D alliances of other colocated firms.Biotechnology, industrial clustering, knowledge spillovers, R&D productivity, strategic alliances
The peculiar velocity field: constraining the tilt of the Universe
A large bulk flow, which is in tension with the Lambda Cold Dark Matter
(CDM) cosmological model, has been observed. In this paper, we provide
a physically plausible explanation of this bulk flow, based on the assumption
that some fraction of the observed dipole in the cosmic microwave background is
due to an intrinsic fluctuation, so that the subtraction of the observed dipole
leads to a mismatch between the cosmic microwave background (CMB) defined rest
frame and the matter rest frame. We investigate a model that takes into account
the relative velocity (hereafter the tilted velocity) between the two frames,
and develop a Bayesian statistic to explore the likelihood of this tilted
velocity.
By studying various independent peculiar velocity catalogs, we find that: (1)
the magnitude of the tilted velocity is around 400 km/s, and its direction
is close to what is found from previous bulk flow analyses; for most catalogs
analysed, u=0 is excluded at about the level;(2) constraints on
the magnitude of the tilted velocity can result in constraints on the duration
of inflation, due to the fact that inflation can neither be too long (no dipole
effect) nor too short (very large dipole effect); (3) Under the assumption of a
super-horizon isocurvature fluctuation, the constraints on the tilted velocity
require that inflation lasts at least 6 e-folds longer (at the 95% confidence
interval) than that required to solve the horizon problem. This opens a new
window for testing inflation and models of the early Universe from observations
of large scale structure.Comment: 7 pages, 7 figures, match the published version in Phys.Rev.
The Fourth Positive System of Carbon Monoxide in the Hubble Space Telescope Spectra of Comets
The rich structure of the Fourth Positive System (A-X) of carbon monoxide
accounts for many of the spectral features seen in long slit HST-STIS
observations of comets 153P/Ikeya-Zhang, C/2001 Q4 (NEAT), and C/2000 WM1
(LINEAR), as well as in the HST-GHRS spectrum of comet C/1996 B2 Hyakutake. A
detailed CO fluorescence model is developed to derive the CO abundances in
these comets by simultaneously fitting all of the observed A-X bands. The model
includes the latest values for the oscillator strengths and state parameters,
and accounts for optical depth effects due to line overlap and self-absorption.
The model fits yield radial profiles of CO column density that are consistent
with a predominantly native source for all the comets observed by STIS. The
derived CO abundances relative to water in these comets span a wide range, from
0.44% for C/2000 WM1 (LINEAR), 7.2% for 153P/Ikeya-Zhang, 8.8% for C/2001 Q4
(NEAT) to 20.9% for C/1996 B2 (Hyakutake). The subtraction of the CO spectral
features using this model leads to the first identification of a molecular
hydrogen line pumped by solar HI Lyman-beta longward of 1200A in the spectrum
of comet 153P/Ikeya-Zhang. (Abridged)Comment: 12 pages, 11 figures, ApJ accepte
Manned Venus Flyby
This study is one of several being conducted at Bellcomm and in Manned Space Flight whose purpose is to give guidance to the Apollo Applications Program's technical objectives by focusing on a longer range goal. The assumed mission in this case is a three-man flyby of Venus launched in November, 1973 on a single standard Saturn V. The selected flight configuration includes a Command and Service Module similar in some respects to Apollo, an Environmental Support Module which occupies the adapter area and a spent S-IVB stage which is utilized for habitable volume and structural support of a solar cell electrical power system. The total injected weight, 106,775 lbs., is within the capability of a single Saturn V of the early 1970's. The study is focused on the selection of subsystem technologies appropriate to long duration flight. The conclusions are reported in terms of the technical characteristics to be achieved as part of the Apollo Applications Program's long duration objectives
Tight-binding study of structure and vibrations of amorphous silicon
We present a tight-binding calculation that, for the first time, accurately
describes the structural, vibrational and elastic properties of amorphous
silicon. We compute the interatomic force constants and find an unphysical
feature of the Stillinger-Weber empirical potential that correlates with a much
noted error in the radial distribution function associated with that potential.
We also find that the intrinsic first peak of the radial distribution function
is asymmetric, contrary to usual assumptions made in the analysis of
diffraction data. We use our results for the normal mode frequencies and
polarization vectors to obtain the zero-point broadening effect on the radial
distribution function, enabling us to directly compare theory and a high
resolution x-ray diffraction experiment
R-parity Conservation via the Stueckelberg Mechanism: LHC and Dark Matter Signals
We investigate the connection between the conservation of R-parity in
supersymmetry and the Stueckelberg mechanism for the mass generation of the B-L
vector gauge boson. It is shown that with universal boundary conditions for
soft terms of sfermions in each family at the high scale and with the
Stueckelberg mechanism for generating mass for the B-L gauge boson present in
the theory, electric charge conservation guarantees the conservation of
R-parity in the minimal B-L extended supersymmetric standard model. We also
discuss non-minimal extensions. This includes extensions where the gauge
symmetries arise with an additional U(1)_{B-L} x U(1)_X, where U(1)_X is a
hidden sector gauge group. In this case the presence of the additional U(1)_X
allows for a Z' gauge boson mass with B-L interactions to lie in the sub-TeV
region overcoming the multi-TeV LEP constraints. The possible tests of the
models at colliders and in dark matter experiments are analyzed including
signals of a low mass Z' resonance and the production of spin zero bosons and
their decays into two photons. In this model two types of dark matter
candidates emerge which are Majorana and Dirac particles. Predictions are made
for a possible simultaneous observation of new physics events in dark matter
experiments and at the LHC.Comment: 38 pages, 7 fig
Functional renormalization group approach to correlated fermion systems
Numerous correlated electron systems exhibit a strongly scale-dependent
behavior. Upon lowering the energy scale, collective phenomena, bound states,
and new effective degrees of freedom emerge. Typical examples include (i)
competing magnetic, charge, and pairing instabilities in two-dimensional
electron systems, (ii) the interplay of electronic excitations and order
parameter fluctuations near thermal and quantum phase transitions in metals,
(iii) correlation effects such as Luttinger liquid behavior and the Kondo
effect showing up in linear and non-equilibrium transport through quantum wires
and quantum dots. The functional renormalization group is a flexible and
unbiased tool for dealing with such scale-dependent behavior. Its starting
point is an exact functional flow equation, which yields the gradual evolution
from a microscopic model action to the final effective action as a function of
a continuously decreasing energy scale. Expanding in powers of the fields one
obtains an exact hierarchy of flow equations for vertex functions. Truncations
of this hierarchy have led to powerful new approximation schemes. This review
is a comprehensive introduction to the functional renormalization group method
for interacting Fermi systems. We present a self-contained derivation of the
exact flow equations and describe frequently used truncation schemes. Reviewing
selected applications we then show how approximations based on the functional
renormalization group can be fruitfully used to improve our understanding of
correlated fermion systems.Comment: Review article, final version, 59 pages, 28 figure
- …