41 research outputs found

    Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms

    Get PDF
    We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin collisions for ground state atoms by about three orders of magnitude. This indicates a huge increase in interaction strength. We study the effect of the vacant Paul trap's electric fields on the Rydberg excitation spectra. To quantitatively describe the exhibited shape of the ion loss spectra, we need to include the ion-induced Stark shift on the Rydberg atoms. Furthermore, we demonstrate Rydberg excitation on a dipole-forbidden transition with the aid of the electric field of a single trapped ion. Our results confirm that interactions between ultracold atoms and trapped ions can be controlled by laser coupling to Rydberg states. Adding dynamic Rydberg dressing may allow for the creation of spin-spin interactions between atoms and ions, and the elimination of collisional heating due to ionic micromotion in atom-ion mixtures.Comment: 7 pages, 5 figures, including appendices. Note that the title has been changed in version

    Trapped ions in Rydberg-dressed atomic gases

    Get PDF
    We theoretically study trapped ions that are immersed in an ultracold gas of Rydberg-dressed atoms. By off-resonant coupling on a dipole-forbidden transition, the adiabatic atom-ion potential can be made repulsive. We study the energy exchange between the atoms and a single trapped ion and find that Langevin collisions are inhibited in the ultracold regime for these repulsive interactions. Therefore, the proposed system avoids recently observed ion heating in hybrid atom-ion systems caused by coupling to the ion's radio frequency trapping field and retains ultracold temperatures even in the presence of excess micromotion.Comment: 9 pages, 5 figures including appendice

    Observation of collisions between cold Li atoms and Yb+^+ ions

    Full text link
    We report on the observation of cold collisions between 6^6Li atoms and Yb+^+ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio. For atoms and ions prepared in the 2S1/2^2S_{1/2} ground state, the charge transfer and association rate is found to be at least~103^{3} times smaller than the Langevin collision rate. These results confirm the excellent prospects of 6^6Li--Yb+^+ for sympathetic cooling and quantum information applications. For ions prepared in the excited electronic states 2P1/2^2P_{1/2}, 2D3/2^2D_{3/2} and 2F7/2^2F_{7/2}, we find that the reaction rate is dominated by charge transfer and does not depend on the ionic isotope nor the collision energy in the range \sim~1--120~mK. The low charge transfer rate for ground state collisions is corroborated by theory, but the 4f4f shell in the Yb+^+ ion prevents an accurate prediction for the charge transfer rate of the 2P1/2^2P_{1/2}, 2D3/2^2D_{3/2} and 2F7/2^2F_{7/2} states. Using \textit{ab initio} methods of quantum chemistry we calculate the atom-ion interaction potentials up to energies of 30×103\times 10^3~cm1^{-1}, and use these to give qualitative explanations of the observed rates.Comment: 8 pages, 7 figures (including appendices

    Rydberg excitation of a single trapped ion

    Full text link
    We demonstrate excitation of a single trapped cold 40^{40}Ca+^+ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d2^2D3/2_{3/2} to 51 F, 52 F and 3d2^2D5/2_{5/2} to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.Comment: 4 pages, 3 figure

    Prospects of reaching the quantum regime in Li-Yb+^+ mixtures

    Get PDF
    We perform numerical simulations of trapped 171^{171}Yb+^+ ions that are buffer gas cooled by a cold cloud of 6^6Li atoms. This species combination has been suggested to be the most promising for reaching the quantum regime of interacting atoms and ions in a Paul trap. Treating the atoms and ions classically, we compute that the collision energy indeed reaches below the quantum limit for a perfect linear Paul trap. We analyze the effect of imperfections in the ion trap that cause excess micromotion. We find that the suppression of excess micromotion required to reach the quantum limit should be within experimental reach. Indeed, although the requirements are strong, they are not excessive and lie within reported values in the literature. We analyze the detection and suppression of excess micromotion in our experimental setup. Using the obtained experimental parameters in our simulation, we calculate collision energies that are a factor 2-11 larger than the quantum limit, indicating that improvements in micromotion detection and compensation are needed there. We also analyze the buffer-gas cooling of linear and two-dimensional ion crystals. We find that the energy stored in the eigenmodes of ion motion may reach 10-100 μ\muK after buffer-gas cooling under realistic experimental circumstances. Interestingly, not all eigenmodes are buffer-gas cooled to the same energy. Our results show that with modest improvements of our experiment, studying atom-ion mixtures in the quantum regime is in reach, allowing for buffer-gas cooling of the trapped ion quantum platform and to study the occurrence of atom-ion Feshbach resonances.Comment: 39 pages, 22 figure
    corecore