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Abstract. We perform numerical simulations of trapped 171Yb+ ions that are buffer

gas cooled by a cold cloud of 6Li atoms. This species combination has been suggested to

be the most promising for reaching the quantum regime of interacting atoms and ions

in a Paul trap. Treating the atoms and ions classically, we compute that the collision

energy indeed reaches below the quantum limit for a perfect linear Paul trap. We

analyze the effect of imperfections in the ion trap that cause excess micromotion. We

find that the suppression of excess micromotion required to reach the quantum limit

should be within experimental reach. Indeed, although the requirements are strong,

they are not excessive and lie within reported values in the literature. We analyze

the detection and suppression of excess micromotion in our experimental setup. Using

the obtained experimental parameters in our simulation, we calculate collision energies

that are a factor 2-11 larger than the quantum limit, indicating that improvements in

micromotion detection and compensation are needed there. We also analyze the buffer-

gas cooling of linear and two-dimensional ion crystals. We find that the energy stored

in the eigenmodes of ion motion may reach 10-100 µK after buffer-gas cooling under

realistic experimental circumstances. Interestingly, not all eigenmodes are buffer-gas

cooled to the same energy. Our results show that with modest improvements of our

experiment, studying atom-ion mixtures in the quantum regime is in reach, allowing

for buffer-gas cooling of the trapped ion quantum platform and to study the occurrence

of atom-ion Feshbach resonances.
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1. Introduction

In recent years, a novel field in atomic physics has developed in which ultracold

atomic clouds are mixed with trapped ions [1–18]. These efforts aim at sympathetic

cooling [16,19,20] of ions by atoms, and have potential applications in probing quantum

many-body systems [21], quantum computation [22, 23] and quantum simulation [24].

Furthermore, Feshbach resonances are predicted to exist in atom-ion mixtures [25–29].

Such resonances play a pivotal role in neutral atom systems for the purpose of tuning

the interactions between the atoms [30] and find applications in studies of quantum

many-body physics [31]. However, up until now no atom-ion Feshbach resonances have

been observed which is likely because the required ultracold temperatures have not been

reached in these systems.
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A crucial step towards realising the applications described above is to reach the

quantum (or s-wave) regime for atom-ion mixtures. It turned out that the Paul or

radio-frequency (rf) trap commonly employed for trapping the ions limits the attainable

temperatures in atom-ion mixtures, and the s-wave regime has so far not been reached in

this system. This limitation stems from the oscillating electric fields employed in the rf

trap, which causes the ion to perform a rapid micromotion. During an atom-ion collision

energy may be transferred from the time-dependent trapping field into the atom-ion

system [16, 32–41]. In fact, runaway heating may occur when the atom is heavier than

the ion. Cetina et al. [35] calculated that the lowest temperatures may be achieved for

atom-ion combinations with large ion to atom mass ratios. They theorize that Yb+-Li,

which has the largest mass ratio of any atom-ion combination allowing straightforward

laser cooling, may enter the quantum regime after improving control over the trapping

voltages to slightly beyond state-of-the-art to compensate excess micromotion.

In this article, we calculate that the s-wave regime of Yb+-Li should be in reach

with current technology and considering all known sources of excess micromotion in the

ion. We perform classical simulations of 171Yb+ ions in a Paul trap that are buffer-gas

cooled by cold 6Li atoms using realistic experimental parameters that we obtain from

our experimental setup and from parameters reported in the literature. We further

investigate the prospects of collisional cooling of single ions and crystals of ions into the

motional ground state using a cloud of ultracold Li, taking into account experimental

imperfections. We give a limit on the remaining number of motional quanta that can be

expected and compute the cooling rate. Motivated by the prospects of a ultracold atom-

ion system to form a solid-state emulator [24] we study the classical cooling dynamics

for multiple trapped ions forming a Coulomb-crystal within the cloud of atoms and show

that the cooling dynamics is very similar to that of a single trapped ion.

This article is organized as follows: First, we give the theoretical background of

ion trapping and micromotion as well as the model for simulating buffer-gas cooling in

section 2. In section 3, we describe the experimental parameters and limitations in our

experimental setup. We use these parameters in the calculations of section 4, where we

study the thermalization of a single trapped ion experiencing each type of micromotion.

In sections 5 and 6 we describe the buffer-gas cooling of linear ion crystals, while section 7

describes the results for two-dimensional ion crystals. Finally, we draw conclusions in

section 8.

2. Simulating buffer-gas cooled ions

2.1. Ion trapping in a linear quadrupole trap

The potential of a Paul trap as a function of ion position ~r can be written as:

Φ(~r, t) =
udc

2

3∑
i=1

αir
2
i +

urf

2
cos (Ωrft)

3∑
i=1

α′ir
2
i (1)
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with the positive, geometry- and voltage-dependent prefactors udc and urf and trap drive

frequency Ωrf . To describe a linear Paul trap as it is used in our experiment we have [42]

α1 = α2 = −1

2
= −α3

2
and α′1 = −α′2 = 1 , α′3 = 0 . (2)

For this choice, the confinement along the 3-axis is supplied by a time-independent

harmonic trapping potential ∝ udc, whereas the radial confinement is supplied by the

oscillating field ∝ urf . Note that in reality the α1,2 coefficients are chosen to slightly

differ from each other to lift the degeneracy in the resulting radial trap frequencies. The

electric field is given by

~E (~r, t) = −~∇Φ (~r, t)

= −udc

(
r3ê3 −

1

2
(r1ê1 + r2ê2)

)
− urf cos (Ωrft) (r1ê1 − r2ê2) ,(3)

with the unit vectors êi in the i-th direction. With that, the equation of motion for

a single ion with mass mion and positive charge +e can be written as the Mathieu

equation [43]

r̈i + (ai + 2qi cos (Ωrft))
Ωrf

4
ri = 0 , i ∈ {1, 2, 3} ≡ {x, y, x} , (4)

with the parameters

a1 = a2 = −1

2
a3 = − 2eudc

mionΩ2
rf

, q1 = −q2 =
2eurf

mionΩ2
rf

, q3 = 0 , (5)

which are the stability parameters of the Paul trap [42]. Usually, Paul traps are operated

at a region where |ai|, q2
i � 1, which can be achieved by properly choosing a suitable

combination of Ωrf and the static and rf electrode voltages ∝ urf , udc. An approximate

solution in first order in qi can then be obtained by

ri(t) ≈ r
(1)
i cos (ωit+ φi)

(
1 +

qi
2

cos (Ωrft)
)
, (6)

where the phase φi and amplitude r
(1)
i are determined by the initial condition at t = 0.

The motion consists of a low frequency part, oscillating with the secular frequency

ωi ≈ 1
2
Ωrf

√
ai + 1

2
q2
i , thus requiring ai + 1

2
q2
i > 0 for a stable solution. In the two

radial directions, the rf field drives the so-called micromotion that oscillates in phase

with the rf drive and whose amplitude depends on the secular motion amplitude and

qi-parameters. Note that in a real ion trap imperfections in the electrode alignment can

lead to a small rf field component also in the axial direction, effectively setting qz 6= 0.

By averaging over the secular oscillation period Ti = 2π
ωi

, one can obtain the average

kinetic energy in each coordinate,

Ēkin,i =
1

2
mion〈ṙi (t)2〉Ti ≈

1

4
mir

(1) 2
i

(
ω2
i +

1

8
q2
i Ω

2
rf

)
, (7)

where the assumption Ωrf � ωi was used.
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2.2. Excess micromotion

Besides the intrinsic micromotion of the ion caused by the radiofrequency drive, stray

charges on the trap electrodes, imperfections of the trap assembly and electrical

connection as well as finite-size effects can lead to various types of so-called excess

micromotion [43] that affects the average kinetic energy of the ion and prevents reaching

ultracold temperatures. Below, we will briefly describe the three different kinds of excess

micromotion that occur in a linear Paul-trap, and in section 3 we will describe how these

can be detected and compensated in our experiment.

Stray electric fields Erad in the radial direction may push the ions away from the

rf null, where they experience the presence of the radiofrequency field even without any

secular energy. This type of excess micromotion we will call radial micromotion. The

modified Mathieu-equation of the system including ~Erad reads [43]

r̈i + (ai + 2qi cos (Ωrf))
Ωrf

4
ri =

eErad,i

mion

, (8)

with i ∈ {x, y} ≡ {1, 2}. To lowest order in qi, the solution is given by

ri(t) ≈
(
r

(0)
i + r

(1)
i cos (ωit+ φi)

)(
1 +

qi
2

cos (Ωrft)
)
, (9)

with the equilibrium position of the secular motion being shifted by r
(0)
i ≈

eErad,i/(mionω
2
i ). For both radial directions this additional shift leads to an energy

Eemm,i =
1

16
mion

(
qir

(0)
i Ωrf

)2

=
4

mion

(
qieErad,iΩrf

8ω2
i

)2

, (10)

in first order. Typically this micromotion can be compensated by applying an external

static electric field to cancel the stray field at the position of the ion. Note that a stray

field component in axial direction only changes the ion’s axial equilibrium position, not

the kinetic energy of the system.

Axial excess micromotion is mainly caused by the finite size of the trap leading to a

radiofrequency pickup on the dc end caps. This pickup leads to an additional, position-

independent, oscillating field with amplitude Eax in axial direction that modifies the

axial Mathieu-equation to

r̈z + azrz =
eEax cos (Ωrft)

mion

, (11)

leading to the analytic solution of a driven harmonic oscillator,

rz(t) =
eEax cos (Ωrft)

mionω2
z − Ω2

rf

+ r(1)
z cos (ωzt+ φz) , (12)

thus increasing the average kinetic energy by the term

Eemm,z =
(eEaxΩrf)

2

4mion (Ω2
rf − ω2

z)
2 . (13)

While it is hard to minimize this pickup by trap design, it can be reduced by appropriate

low-pass filters connected to the end cap electrodes or injecting an rf field with opposite

phase at one of the end cap electrodes [44].
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Phase- or quadrature micromotion [45] is caused by a phase difference δφrf between

the radiofrequency voltages on the opposing rf-electrodes, e.g. in x-direction. The phase

micromotion can be approximately described by an additional homogeneous oscillating

field in the direction of the electrodes [43], ~Eph ≈ 1
4e
qxmionδφrfΩ

2
rfRtrap sin (Ωrft) êx, where

Rtrap is half the distance between the two rf-electrodes. The field leads to the modified

Mathieu-equation

r̈x + (ax + 2qx cos (Ωrft)) =
1

4
qxRtrapδφrfΩ

2
rf sin (Ωrf) . (14)

The solution in first order approximation then reads

rx(t) = r(1)
x cos (ωxt+ φx)

(
1 +

1

2
qx cos (Ωrf)

)
(15)

− 1

4
qxRtrapδφrf sin (Ωrft) ,

leading to an additional term in the average kinetic energy in the x-direction of

Ephmm =
1

64
mion (qxRtrapδφrfΩrf)

2 . (16)

Compensation of the quadrature micromotion is possible but technically challenging,

for example by using two coherent rf drives with an adjustable phase difference between

their respective outputs.

2.3. Modeling atom-ion collisions

We model the atom-ion interaction by the long range attractive r−4 induced dipole-

monopole potential [46] and an additional repulsive r−6 term at short ranges to simulate

a hard core potential,

Va−i(r) = C4

(
− 1

2r4
a−i

+
C6

r6
a−i

)
, ra−i = ||~ra − ~ri|| , (17)

where C6 is given as a fraction of C4, leading to a zero crossing of the potential at a

distance of rhc =
√

2C6. The attractive r−4 potential leads either to glancing collisions

where mainly the momentum direction of the partners slightly change, or to Langevin

collisions where atom and ion are spiraling into each other, enabling for a large energy

and momentum transfer. Langevin collisions occur when the impact parameter b is less

than the Langevin range bc = (2C4/Ecol)
1/4 [46]. Notably, the Langevin collision rate

ΓL = 2πρa

√
C4/µ is only dependent on the atomic density ρa and the C4 potential as

well as the reduced mass µ of the two body system but not the collision energy Ecol.

To numerically simulate the classical dynamics, a single atom is introduced on a

sphere with constant diameter r0 centered at the equilibrium position of the ion before

each collision. The diameter of the sphere has to be large enough to prevent sudden

changes in the potential energy of the ion as well as leaving enough room for the ion

orbit due to micromotion and secular motion. On the other hand, the radius should not

be too large to prevent unnecessary long propagation times. To fairly sample the flow of

atoms, the atom launching coordinates are sampled from a uniform distribution on the
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sphere surface at the beginning of each collision event. To obtain a starting position,

two points p and q are randomly picked from the interval [0, 1]. The azimuthal angle φ

is then given by φ = 2π · p and the polar angle θ = arccos (2q − 1) [47], from which the

Cartesian coordinates are derived,

ra,1 = r0 cos (φ) sin (θ) ra,2 = r0 sin (φ) sin (θ) ra,3 = r0 cos (θ) . (18)

The initial velocity ~va of the atoms is then sampled from the probability distribution

PΦ(~va, Ta) of the flux of thermal atoms

Φ(~va) = ρa4πr2
0 êr · ~va , (19)

at a given temperature Ta and density ρa through the sphere,

PΦ(~va, Ta)d3va =
Φ(~va)

ρa4πr2
0

m2
a

2π (kBTa)2 e
− ma~v

2
a

2kBTa d3va (20)

=
m2

a

2π (kBTa)2va,re
−
mav

2
a,r

2kBTa dva,re
−
mav

2
a,φ

2kBTa dva,φe
−
mav

2
a,θ

2kBTa dva,θ ,(21)

meaning that the velocity components va,φ and va,θ tangential to the sphere surface

are picked from one-dimensional Gaussian distributions with a standard deviation of

σ =
√
kBTa/ma each, whereas the perpendicular velocity va,r is picked from a Weibull-

distribution with shape parameter k = 2 and scale parameter λ =
√

2kBTa/ma. Only

atoms flying towards the center of the sphere will have a chance to collide with the ions,

therefore it is enforced that va,r < 0. The Cartesian components of the velocity are then

obtained by a coordinate transformation of the spherical components.

After the atom is introduced, the atom-ion system is propagated forward in time by

an adaptive step-size Runge-Kutta algorithm of fourth order [48] maintaining a desired

relative accuracy in each coordinate ptol in each coordinate as explained in Appendix

A. This allows for a fast propagation when atom and ion are far away from each other

and an accurate propagation when the interaction is strong. To define the end of a

collision event, a second sphere of radius r1, slightly bigger than r0 is introduced. Once

the atom leaves this second sphere, all ion’s coordinates at this time are intermediately

stored and the energy of the ion is determined. For this, the ion motion is propagated

further for a fixed amount of time tkin � 2π/ωi using Nkin fixed time steps of duration

∆tkin, sufficiently small to resolve micromotion. During this additional propagation all

ion trajectories are stored. From the velocities ~vi,n at each point in time the average

kinetic energy

Ēkin =
1

Nkin

1

2
mion

Nkin∑
k=1

Nions∑
n=1

~vi,n (tk)
2 =

3Nions

2
kBTkin, (22)

is computed, which can be used to determine the collision energy but does not contain

any information about how much secular energy is stored in the vibrational modes of the

ion. The decomposition of the kinetic energy into micromotion and vibrational energy

will be discussed in section 5. Note that within this article we will often mention the

kinetic temperature Tkin, although due to the included micromotion energy, technically

it is not a temperature but the average kinetic energy in units of 3NionskB/2.
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Parameter Value Comment Section

fz 42.426 kHz axial trap frequency –

frf 2 MHz rf-drive frequency –

qx 0.219 rad. q-parameter –

qy −qx + qz rad. q-parameter

qz 0 ax. q-parameter 6.3

T
(0)
sec 0µK initial ion temp. –

Ta 2µK atomic bath temp. 4.1

r0 0.6µm atom launch sphere rad. Appendix A

r1 1.005 · r0 atom escape sphere rad. Appendix A

ptol 10−10 relative num. tolerance Appendix A

Nfft 214 Fourier grid size Appendix A

∆tfft 50 ns Fourier time resolution Appendix A

∆tkin 5 ns time grid for Ēkin –

C4 5.607 · 10−57 J ·m4 attr. int. coeff. –

C6 5 · 10−19 m2 · C4 rep. int. coeff. Appendix A
~Erad {0, 0, 0}V/m dc offset field 4.2 & 6.2

Eax 0 V/m axial rf pickup ampl. 4.3 & 6.2

δφrf 0 mrad rf phase mismatch 4.4 & 6.2

Table 1. Parameters used for the numerical simulation of the atom-ion collisions,

unless given otherwise in the text. If varied, the last column refers to the respective

section where it is investigated.

2.4. Collision energy and s-wave limit

The s-wave limit of 171Yb+/6Li is reached at a collision energy of:

Ts =
~4

2kBµ2C4

= 8.6µK . (23)

The collision energy is given by the energy in the relative atom-ion coordinate. In the

experimentally relevant situation in which the ion has a much larger kinetic energy than

the atoms Tkin � Ta, the collision energy is given by:

Ecol/kB = Tcol ≈
3

2

µ

mion

Tkin . (24)

Therefore, to reach the quantum regime in the limit where Ta → 0, the requirement for

the ion is Tkin < 168µK [17]. In this work, we use Ta = 2µK� Ts such that Tkin � Ta

is fulfilled in most circumstances. At the same time, this choice still allows for a classical

treatment of the atomic bath [20].

3. Micromotion detection and compensation

The experimental setup is described in detail in Ref. [49]. The linear Paul trap is made

out of four blade electrodes with a distance of Rtrap = 1.5 mm to the trap center. End
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caps with a spacing of 10 mm are used to confine the ion along the axial direction.

Two sets of additional electrodes can be used for compensation of stray electric fields.

Oscillating voltages at a frequency of Ωrf = 2π × 2 MHz and an amplitude of V0 = 75 V

are applied to the blades and dc voltages of Vdc ≈ 15 V to the end caps. This results in

radial and axial trap frequencies of ωrad ≈ 2π× 150 kHz and ωax ≈ 2π× 42 kHz. Below,

we describe how we detect and compensate micromotion in our setup and give limits

on the attainable experimental parameters. More details on the micromotion detection

and compensation can be found in Ref. [49].

A radial stray field component Erad,i leads not only to excess micromotion but also to

a shift in equilibrium position. Within the horizontal direction, this can be detected by

tracking the ions position for different radial trap frequencies, shifting the ions position

by r
(0)
h ≈ eErad,h

mionω
2
h
, for ωx ≈ ωy = ωh. We measure the shift on the ion by imaging

from the top. We extract the ion’s horizontal position from averaging over five camera

images at each radial trap frequency setting and fitting a Gaussian function. From these

measurements we conclude that Eemm,h < 0.5 V/m under optimal circumstances.

The ion’s vertical position cannot be obtained with the camera as the imaging

system and vacuum system was designed to only image the ions from the top. Instead, we

use the magnetic field dependence of the (2S1/2, F = 0,mF = 0)↔ (2S1/2, F = 1,mF =

1) hyperfine splitting in 171Yb+ [50] for a determination of position shifts as a function

of trap frequency. To do so, we apply a vertical magnetic field gradient of gz = 0.15 T/m

which leads to a frequency shift of 2.1 kHz/µm. By comparing the frequency shift at

radial confinements of ωrad = 2π × 80 kHz and ωrad = 2π × 230 kHz using microwave

Ramsey spectroscopy, we measure a dc electric field of Edc = 0.29(2) V·m−1 for 1 V

applied to the compensation electrodes. From these measurements we conclude that

Eemm,v < 0.3 V/m at optimal compensation.

The axial micromotion is obtained by measuring the line broadening of the 4.2 MHz

wide 2D3/2 → 3D[3/2]1/2 transition at 935 nm wavelength in Yb+ [50]. For this, we use

a laser beam aligned along the trap axis [43, 49]. We obtain an upper bound to the

amplitude of the oscillating electric field in the trap center of Eax ≤ 15 V·m−1, limited by

the observed linewidth of the 2D3/2 → 3D[3/2]1/2 transition at optimal compensation.

By measuring the axial micromotion at various ion positions along the trap axis, we

obtain qz = 0.0023.

Aligning the beam under 45◦ with respect to the trap axis allows us to also check

for quadrature micromotion, but none was detected. The observed transition linewidth

results in the limit δφrf < 0.65 mrad. Using a transition with a narrower linewidth,

e.g. the 22 Hz wide 2S1/2 → 2D5/2 clock transition at 411 nm in Yb+ [51], could improve

these limits significantly.

4. A single ion in the cold buffer gas

In this section, we present the simulation results for collisions between a single trapped

ion in a Paul trap using parameters that can be achieved with the ion trap used
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Figure 1. Equilibrium average kinetic energy in units of Tkin of a single ion colliding

with atoms (left) and number of collisions required to equilibrate (right) versus

temperature of the atoms. The results were fit with a linear function (solid line, left)

or a square root function (solid line, right) respectively. The dashed line corresponds

to a hypothetical case without micromotion-induced heating as explained in the text.

in our experiment. We investigate the influence of atomic bath temperature as well

as the different kinds of micromotion on the ion’s average kinetic energy for realistic

parameters. For simplicity, we start our calculations with an ion that has no energy and

observe how this ion thermalizes with the atomic bath in a similar way as described in

Refs. [16, 35]. Although chosen for convenience, this situation is also of experimental

relevance, as the ion may be laser-cooled close to its ground state of motion before the

atoms are introduced [16].

4.1. Influence of the atomic bath temperature

We simulated collisions for Ta between 0 − 50µK. The ion’s averaged kinetic energy

after equilibration in units of Tkin and typical 1/e number of collisions to equilibrate

Ncol were determined by fitting an exponential function of the form

T (ncol) = (Tkin − T0)
(

1− e−
ncol
Ncol

)
+ T0 , (25)

to the results obtained by averaging at least 300 individual runs. The results are shown

in Fig. 1. The errors given in the plot correspond to the standard errors of the fit

parameters. The average kinetic energy of the ion (left) in units of Tkin shows a strictly

linear dependence with a slope of 1.79(2) and offset of 7.60(14)µK. The dashed line

shows the hypothetical case in which each secular mode of the ion equilibrates with the

temperature of the atom, according to the approximate prediction of Eq. 7. Its slope

reads 1.68 using the trap parameters of the simulation. In particular, the deviation from

unity slope is given by the extra energy stored in the micromotion amplitude, which is

approximately 1
2
kBTa extra per radial direction [43], such that the energy of the atomic

bath excites five kinetic degrees of freedom instead of three, explaining the slope of

approximately 5/3. The deviation in slope of the simulated points with respect to the

prediction is expected to be caused by the approximations made to obtain the prediction
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Figure 2. Equilibrium temperature of a single ion colliding with atoms at 2µK (left)

and number of collisions required to equilibrate (right) versus radial electric offset field.

The results (blue points) were fit with a quadratic function (solid blue curve). The

red points correspond to the average kinetic energy of an ion initialized at zero secular

temperature without an atomic bath, along with a quadratic fit (red dashed curve) and

the approximate theoretical amount of micromotion energy (blue dashed curve). The

dashed gray lines indicate the s-wave temperature limit for Ta → 0. The inset shows

the difference between the solid and dashed blue curve, resembling the micromotion

induced heating. Other colors are explained in the text.

(i.e. |ai| and q2
i � 1, see Sec. 2.1). The offset can be seen as the direct influence of

micromotion-induced heating, transferring energy from the trap drive rf field into the

secular motion of the ions, mediated by the atoms. The number of collisions required

to equilibrate (right) follows a square root function, which is to be expected, since the

thermalization rate Γeq = 1/Ncol should be directly proportional to the fraction of events

that lead to thermalization, namely Langevin collisions, divided by the number of total

events, Γeq ∝ ΓL

Φ(~va)
, with ΓL the Langevin rate and Φ(~va) the flux into the sphere on

which the atoms start as defined in Eq. 19. Thus, Ncol ∝ Φ(~va) ∝
√
Ta . From the fit,

we obtain a proportionality factor of 412(8)/
√
µK

4.2. Influence of radial excess micromotion

In this paragraph, we investigate the influence of radial excess micromotion caused by

a stray electric field ~Erad on the average kinetic energy of a single ion when immersed

in a cold atomic bath of 2µK. We scanned Erad over a range of 0.0 to 0.6 V/m and

determined the ion’s average kinetic equilibrium energy in units of Tkin and the typical

number of collisions required to equilibrate Ncol according to Eq. 25 by averaging over

at least 300 individual runs for each point. We additionally checked the influence of the

radial direction of Erad. The results are shown in Fig. 2. The temperatures (blue) were

calculated using a radial electric field in x-direction only. The results were fit with a

quadratic function (solid blue line),

Tkin = T1 + θErad
E2

rad , (26)

leading to a quadratic rise factor of θErad
= 2680(15)µK · (V/m)−2. The dashed
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Figure 3. Equilibrium temperature of a single ion colliding with atoms at 2µK (left)

and number of collisions required to equilibrate (right) versus axial rf-field amplitude.

The temperatures (blue) were fit with a quadratic function (solid blue curve). The

red points correspond to an ion initialized at zero secular temperature without the

presence of an atomic bath, in agreement with the approximate theoretical amount of

micromotion energy (dashed blue curve). The dashed gray lines indicate the s-wave

temperature limit. The inset shows the difference between the solid and dashed blue

curve, resembling the micromotion induced heating. Colors are explained in the text.

blue curve represents the approximate theoretical amount of kinetic energy due to the

presence of excess micromotion, according to Eq. 10, with a quadratic rise factor of

2360µK·(V/m)−2. Also shown is the average kinetic energy for an ion without an atomic

bath present, initialized at zero temperature (red points) along with a quadratic fit (red

dashed line). The difference between the solid blue curve and the dashed red curve

corresponds approximately to the amount of energy stored in the intrinsic micromotion

and the secular motion. The point at Erad = 0.3 V/m was simulated once with a factor

10 smaller tolerance parameter ptol in the propagator to check for numerical errors. The

values in orange were taken using a dc field with equal components Erad,x = Erad,y in

both radial directions, the values in green (behind the orange points) with a dc field

with opposite components, Erad,x = −Erad,y, to check the influence of the direction of

Erad, showing no deviation from the fitted curve. The number of collisions required to

equilibrate (right) seems to slightly decrease with increasing field amplitude.

4.3. Influence of axial micromotion

In this paragraph, we investigate the influence of a homogeneous oscillating electric field

along the axial direction of the trap on the average kinetic energy of a single ion when

immersed in a cold atomic cloud at 2µK. We scanned the field amplitude Eax from

0− 15 V/m and determined the ion’s average kinetic equilibrium energy in units of Tkin

and the typical number of collisions required to equilibrate Ncol according to Eq. 25 by

taking the average over at least 300 idividual runs for each point. The results are shown

in Fig. 3. The temperatures (blue) were fit with a quadratic function (solid blue curve),

Tkin = T1 + θEaxE
2
ax , (27)
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leading to a quadratic rise factor of θEax = 7.44(3)µK · (V/m)−2. The dashed blue

curve represents the approximate theoretical amount of kinetic energy due to the

axial oscillating electric field, according to Eq. 13, with a quadratic dependence of

6.92µK · (V/m)−2, in agreement with the points in red, showing the average kinetic

energy of a crystal at zero secular energy without atoms present.

Due to the large axial oscillation amplitudes at high values of Eax, a fixed starting

sphere causes the atoms to occasionally launch very close to the ion, thus introducing

unrealistic jumps in the potential energy that can lead to unstable behavior. Therefore,

the blue points were not obtained using a starting sphere with fixed origin at the ion’s

equilibrium position, but a comoving sphere around the ion’s immediate position. As

a consequence, there are events where the ion is moving away from the introduced

atom such that the atom is immediately registered as having escaped, leading to an

increased number of required collisions, (Fig. 3 right, blue points) as compared to the

non-comoving case (green points). This effect seems to increase with field amplitude.

A comoving starting sphere means that especially very slow atoms that would usually

cause a Langevin collision are overseen. Therefore, the average contribution of the atom

to the collision energy increases. Since the ion temperature in this regime is dominated

by the micromotion energy anyways, this effect can be ignored.

4.4. Influence of quadrature micromotion

The effect of phase micromotion on the equilibrium average kinetic energy of a single ion

in an atomic gas of 2µK is investigated. We scanned the phase difference δφrf from 0-

0.65 mrad, corresponding to the expected experimental upper limit from the linewidth

broadening measurement as discussed in 3. We determined the resulting equilibrium

average kinetic energy in units of Tkin as well as Ncol according to Eq. 25 by averaging

over at least 300 individual runs per point. The results are shown in Fig. 4. The

temperatures (blue) were fit with a quadratic function (solid blue line),

Tkin = T1 + θδφrf
δφ2

rf , (28)

leading to a quadratic rise factor of θδφrf
= 3980(15)µK · mrad−2. Also shown is the

approximate theoretical amount of kinetic energy stored in the phase micromotion

(dashed blue), according to Eq. 16, with a quadratic increase of 3651.2µK · mrad−2

for the parameters used in the simulation. As in the case for axial micromotion, the

red points show the average kinetic energy of an ion without an atomic bath present,

in agreement with the dashed blue line. All points of the plot were simulated using a

comoving start and escape sphere for the atoms to prevent numerical instabilities, thus

leading to an increasing number of collisions required to equilibrate (right).

5. Ion crystals

In this section, we briefly introduce the theoretical and numerical framework to describe

the normal modes of oscillations in an ion crystal. We present and test a numerical
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Figure 4. Equilibrium temperature of a single ion colliding with atoms at 2µK (left)

and number of collisions required to equilibrate (right) versus phase mismatch of the

two radial rf-components of the potential. The temperatures (blue) were fit with a

quadratic function (solid blue curve). The red points correspond to an ion initialized

at zero secular temperature without the presence of an atomic bath, in agreement with

the approximate theoretical amount of micromotion energy (dashed blue curve). The

dashed gray lines indicate the s-wave temperature limit. The inset shows the difference

between the solid and dashed blue curve, resembling the micromotion induced heating.

method to extract the energy stored in the secular motion of each individual mode.

By treating the mutual Coulomb interaction of the ions as well as the trapping itself

in harmonic approximation, the ion crystal can be described as a system of coupled

harmonic oscillators. This system can be decomposed into normal mode coordinates

and frequencies. This procedure is described in detail in e.g. [52] for a linear ion crystal.

For a given set of secular trap frequencies and number of ions, the equation of motion

reads

mion~̈rn = ~Fn = −mionω̂
2~rn +

e2

4πε0

∑
m 6=n

~rn − ~rm
‖~rn − ~rm‖3 , (29)

where the first term describes the three-dimensional trapping of each ion with the trap

frequency matrix ω̂ = diag (ωx, ωy, ωz) and the second term is the mutual Coulomb

interaction of the N -ion system. To obtain the transformation matrix to transform the

system into normal mode coordinates, one first has to find the equilibrium positions

~r
(0)
n of the ions within the trap, defined as ~Fn(~r

(0)
n ) = 0 . We do this in a two-step

process: First, we numerically simulate the cooling of an N -ion system in our trap until

it crystallizes by introducing an additional velocity-dependent force in the equation of

motion,

mion~̈rn = ~Fn − κ~̇rn , κ > 0 . (30)

As a second step, we use the numerically obtained equilibrium positions as a guess for

numerically finding the positions where the force on the ions disappears. This procedure

was found to be more stable than immediate minimization of force on the ions, especially

for higher dimensional crystals.
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Treating the coordinates of the ions as small deviations from their equilibrium

positions, ~rn(t) ≈ ~r
(0)
n + ~ρn(t), the potential energy of the system can be expanded to

second order in ~ρn to

U =

Nions∑
n=0

1

2
mionω̄

2~r 2
n +

1

2

e2

4πε0

∑
n6=m

1

‖~rn − ~rm‖
(31)

≈ 1

2
mionω

2
z

3∑
i,j=1

Nions∑
m,n=1

A3(m−1)+i,3(n−1)+jρm,iρn,j . (32)

With the 3Nions×3Nions Hessian matrix A3(m−1)+i,3(n−1)+j = ∂2U
∂rm,i∂rn,j

∣∣∣
0
, where rm,i is the

coordinate of ion m in the i-th direction and the 0 denotes its evaluation at equilibrium

positions. For clarity we rename the indices of A to u = 3(m− 1) + i, v = 3(n− 1) + j,

u, v ∈ {1, . . . , 3Nions}. Diagonalization of the symmetric Hessian matrix leads to the

diagonal form Du,v that can be obtained from the transformation D = STAS, where S

is the matrix of eigenvectors of A. The 3Nions eigenmode frequencies fqu are then given

by 2πfqu = ωqu = ωz
√
Du,u and the potential energy in secular approximation reads

Usec =
1

2
mion

3Nions∑
u=1

ω2
quq

2
u , (33)

with qu =
∑Nions

n=1

∑3
j=1 Su,3(n−1)+jρn,j the normal mode coordinates.

Once transformed to these coordinates, the trajectories stored in each kinetic energy

determination are Fourier transformed numerically using a standard Cooley-Tukey fast

Fourier transform (FFT) algorithm [53]. The Fourier spectra of the normal coordinates

then contain only a peak at the respective mode frequency along with peaks at the

micromotion sidebands. To obtain the energy stored in each mode, we compute the

average kinetic energy of each normal coordinate qm,

Ēm,tot =
1

2
mion

1

Nfft

Nfft∑
k=1

q̇m(tk)
2 , (34)

where m is the mode index and k the time index of the Fourier time grid of spacing

∆tfft. Since this energy still contains micromotion, we make use of the Fourier relation

for time derivatives,

(F q̇m)(f) = −i2πfq̃m(f) , (35)

where q̃m(f) = (Fqm)(f) is the Fourier transform of the normal coordinate qm(t), and

Parseval’s theorem for the discrete Fourier transformation,

Nfft∑
k=1

||q̇m(tk)||2∆tfft =

Nfft∑
k=1

|| − i2πfkq̃m(fk)||2∆ffft (36)

= (2π)2∆ffft

Nfft∑
k=1

f 2
k q̃m(fk)q̃

∗
m(fk) , (37)
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with which we can replace the expectation value of the squared normal mode velocity

q̇m(t) and obtain

Ēm,tot =
1

2
mion(2π)2∆f 2

fft

Nfft∑
k=1

f 2
k q̃m(fk)q̃

∗
m(fk) =

1

2
kBTm , (38)

using the identity for the Fourier frequency grid spacing ∆ffft = (Nfft∆tfft)
−1. To test

the validity of this method, the total kinetic energy of all modes

Ētot,fft =

3Nions∑
m=1

Ēm,tot =
3Nions

2
kBTfft , (39)

can be compared with the average kinetic energy defined in Eq. 22, which is presented

in section Appendix B. Since typically all secular frequencies are separated far from the

micromotion frequency, the high frequency parts of the spectrum can be cut off easily

by reducing the limit of the sum in Eq. 38 to a value Nc = fc/∆ffft, where fc is the

desired cut-off frequency. To obtain only the secular energy part for each of the modes

Ēm,sec, the cut-off frequency should be chosen centered between the highest normal

mode frequency and the lowest micromotion sideband. We define the temperature of

each mode by Tm,sec and the total secular temperature as Tsec as

Ēsec =

3Nions∑
m=1

Ēm,sec =

3Nions∑
m=1

1

2
kBTm,sec =

3Nions

2
kBTsec . (40)

The approximate eigenmode frequencies fqm can be found by searching the peak position

of the Fourier spectrum for the respective mode within an accuracy of the Fourier

frequency grid size ∆ffft = 1/(Nfft∆tfft) leading to a relative error typically on the order

of 1
2
∆ffft/fqm .

A typical spectrum of the Fourier amplitudes for a linear four-ion crystal is shown

in Fig. 5. The Fourier spectra of all spatial coordinates (left) show each multiple peaks

at the twelve different mode frequencies. The spectrum also contains the micromotion

sidebands around the trap drive frequency of frf = 2 MHz and a possible cutoff value

(gray bar) for the secular energy determination. While some of the peaks at around

130 kHz are too close to be distinguished, the Fourier spectra of the normal mode

coordinates (right) show only one peak each, allowing for the numerical frequency and

energy determination within each mode. Note that the plots are cut off at the relevant

eigenmode frequency scale, not showing the micromotion sidebands around the trap

drive frequency frf = 2 MHz. The twelve normal modes of the four-ion crystal are

visualized in Fig. B3 in Appendix Appendix B, along with their respective frequencies

obtained from the diagonalization of the secular case as presented in this section and

the frequency peak positions of the fourier spectra. Typically, these modes are assigned

with the names given in the right column [54].
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Figure 5. Fourier amplitudes for the twelve spatial coordinates (left) and for the

twelve normal coordinates (right) for a simulated linear four-ion crystal at an average

kinetic energy of around 5µK. Each spatial coordinate shows contributions of multiple

frequencies, whereas the normal modes are clearly decoupled and show only a single

peak at the respective mode frequency. For the spatial coordinates, the micromotion

sidebands around frf = 2 MHz and the cutoff frequency (gray bar) for the secular

energy determination are shown as well. The Fourier spectra were obtained using

Nfft = 16384 steps of ∆tfft = 50 ns.

6. Ion crystals in the cold buffer gas

In this section, we investigate the influence of the number of ions as well as that of

all types of micromotion in an ion crystal. We further analyze the case where an

additional oscillating electric quadrupole field in axial direction is present, leading to

a non-vanishing qz-parameter, which is typically the case under realistic experimental

conditions. In this section, we assume that the entire crystal is immersed in the atomic

cloud, and each ion is equally likely to collide with an atom. In particular, we dice the

ion at which the atom is introduced before calculating each collision event.

6.1. Influence of the number of ions

First, the influence on the achievable temperature of the crystal Tkin (see Eq. 22)

and typical number of collisions required to equilibrate Ncol as defined in Eq. 25

was investigated. The results for one to six ions trapped using no axial or excess

radial micromotion is shown in Fig. 6. For one and two ions at least 300 runs were

averaged, whereas due to the computational effort for three to six ions, only 40 runs

each were simulated, thus leading to worse statistics and thus larger errors. For the final

temperature of the crystal (left) a weak dependence on number of ions can be observed.

The results were fit with a heuristic fit function (blue line),

Tkin = T1 + θi (Nions − 1)2 , (41)

leading to T1 = 11.4(2)µK and a quadratic rise factor of θi = 0.17(2)µK. The number

of collisions required for thermalization (right) is strictly linear in number of ions. The

linear fit (solid line) leads to an increase of 626(20) collisions per additional ion. The

behavior is to be expected since the number of modes of the crystal that need to be
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Figure 6. Final temperature Tkin (left) and the number of collisions required to

equilibrate (right) versus number of ions in a linear crystal colliding with atoms at

2µK. The kinetic energy shows a weak dependence on number of ions, whereas Ncol is

strictly linear.

cooled increases linearly as well. While in the simulation only one atom is introduced

at a time, in the experiment the density of atoms ideally is the same all along the ion

crystal, thus increasing the actual collision rate by the factor Nions. Consequently, the

thermalization time for an Nions-crystal is expected to be the same as for one ion.

6.2. Influence of excess micromotion

Similar to the single ion case, the effect of radial excess micromotion as well as

axial micromotion and quadrature micromotion was investigated. Additionally, the

dependence of the secular energy was studied. The obtained results can be found

in Appendix C. The behavior of the final average kinetic energy versus the scanned

micromotion parameter is in perfect agreement with the single ion case.

6.3. Influence of a non-vanishing axial rf-gradient (qz 6= 0)

To study the effect of a non-vanishing qz, the parameter was scanned from 0 to 0.005.

The value in our ion trap is around qexp
z = 0.0023 for similar trapping parameters as

used in the simulation. The resulting equilibrium Temperatures Tkin and Tsec are shown

in Fig. 7 (blue). The points were obtained by averaging over at least 30 individual runs

for each value of qz and fitting the averages according to Eq. 25. The results for the

average kinetic energy (left) were fit using a quadratic function with offset (solid line),

Tkin(qz) = T1 + θqzq
2
z , leading to a quadratic rise factor of θqz = 8.29(6) · 107 µK with

offset T1 = 13.0(6)µK. The approximate theoretical dependence of the average kinetic

energy according to Eqs. 9-10 is shown as a dashed line. The quadratic rise of the

theoretical curve is given by θtheo
qz = 7.80 · 107 µK. The points in red show the average

kinetic energies due to the influence of qz in the non-interacting case where the ions were

initialized without secular energy. A quadratic fit of the red points lead to a rise factor

of θ
(0)
qz = 7.81(1) · 107 µK, in good agreement with the prediction from the approximate
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Figure 7. Equilibrium temperature of a linear four-ion crystal colliding with atoms at

2µK (left) and secular temperature (right) versus qz parameter. The left points (blue)

were fit with a quadratic function and an offset (solid curve). The dashed curve shows

the approximate theoretical behavior as explained in the text. The dashed gray lines

indicate the s-wave temperature limit for Ta → 0. The red dots were obtained from a

simulation with zero secular energy and no atoms present.

solution, which is to be expected as the approximation holds for q2
z � 1. The secular

temperature (right) shows an almost linear dependence on qz and resembles the actual

influence of the additional micromotion-induced heating due to a non-vanishing qz.

6.4. Micromotion-induced heating on the individual modes

In this section, we analyze the effect of each type of micromotion on the individual modes

of a four-ion crystal. The secular temperature of each mode was obtained as described

in section 5 from the simulations of the linear four-ion crystal in section 6.2 and 6.3.

The resulting temperatures for the twelve individual modes as presented in Fig. B3 are

shown in Fig. 8 for radial excess micromotion (left top) axial micromotion (right top)

and quadrature micromotion (left bottom). In each of the three cases the radial modes

equilibrate to a slightly higher temperature than the axial modes, when the scanned

excess micromotion parameter is low. For high values the temperature of the modes

with excess micromotion dominate, which is the x-direction (red) for both radial and

quadrature micromotion and the z-direction (black) in the case of axial micromotion.

A further sub-separation of the radial and axial modes is not resolved.

Interestingly, for a non-vanishing axial gradient, expressed by qz, the situation is

quite different, as it is shown in Fig. 8. In this case, the modes separate for high qz
into different groups, starting with the x and y zigzag modes (red and blue crossed

circles) at the lowest temperature for qz = 0.05. The next group is formed by the x and

y center-of-mass modes (red and blue squares) along with the drum modes (red and

blue triangles) and the z anti-stretch mode (black triangles). Approximately located

at mode average temperature the two tilt modes (red and blue circles) are found. At

higher temperature, the three remaining axial modes Egyptian (black crossed circles),

center-of-mass (black squares) and stretch (black circles) are located. This behavior is
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Figure 8. Individual secular temperatures Tsec,m of each normal mode of a linear

four-ion crystal colliding with atoms at Ta = 2µK in the case of a radial dc electric

field Erad in x-direction (left top), a homogeneous axial oscillating field (right) with

amplitude Eax (right top) or in the presence of a rf phase shift δφrf between the rf

electrodes (left bottom). The results depicted in red and blue were obtained from the

four modes oscillating in x- or y-direction respectively, whereas the results in black were

obtained from the four axial modes. The plot on the down right shows the behavior

of the twelve secular mode temperatures for a non-vanishing qz parameter. The insets

illustrate the respective modes, in which the arrows indicate the direction and relative

amplitude of motion.

mainly reasoned by the participation of the outer ions to these modes, since these can

exchange the largest amount of energy during a collision due to their large micromotion

amplitudes. While the contribution of the outer ion’s motion to the zigzag modes is

lowest and the mode is moving perpendicular to the micromotion direction, the radial

center-of-mass and drum modes show larger and equal coupling as indicated by the arrow

length in the mode visualization insets and in table B3. The anti-stretch mode shows

less coupling strength for the outer ions but moves in the direction of micromotion, thus

enhancing the probability for a high energy exchange within a collision. The strongest

radial contribution of the outer ion’s motion is to the two tilt modes, leading to the

highest radial mode temperatures. As in the case of an homogeneous oscillating axial

field, the highest temperatures are found within axial modes, dominated by the one with

the largest contribution of the outer ion’s motion, the stretch mode.
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7. Two-dimensional ion crystals

By adjusting the axial and radial trapping fields, it is possible to change the shape

and dimensionality to form two dimensional ion crystals [55–58]. Even with perfect

micromotion compensation, there are always ions within any nonlinear crystal that have

their quasi-equilibrium position outside the radiofrequency node axis, thus experiencing

a non-vanishing oscillating electric field, leading to additional, unavoidable micromotion.

Therefore, immersing the complete ion crystal in a cloud of ultracold atoms will always

lead to micromotion-induced heating of the normal modes. To avoid this effect, one

can utilize the large spacing between the ions, enabling the experimental possibility

to overlap a dense and small atomic cloud only with a single ion sitting at the axial

radiofrequency node within a larger ion crystal.

To simulate a stable 7-ion hexagonal ion crystal, we change the trap parameters to

fz = 95.459 kHz, qx = qy = 0.261, and αx = 1.0, αy = −2.0 to achieve fx = 211.002 kHz

and fy = 127.229 kHz as radial secular trap frequencies, all within experimental reach

with the ion trap used in our experiment. Due to the stronger confinement in the x-

direction, the crystal forms in the y− z plane. Its geometry along with its approximate

(secular) mode structure is depicted in Fig. 9. Notably, in contrast to a linear crystal,

the mode with the highest frequencies are not center-of-mass modes, but the two planar

blink modes, where the ion density oscillates in y and z direction respectively. Also the

mode with the lowest frequency is not a center-of-mass mode but the x rotate mode,

where all six ions defining the hexagon oscillate in phase clockwise/counterclockwise

around the central ion within the crystal plane.

To simulate the thermalization of the secular modes, we initialize the ion crystal

with negligible secular energy by first switching on a strong velocity-dependent damping

force as defined in Eq. 30 that is adiabatically turned to zero. To give the ion crystal an

initial secular energy, we add to each ion’s velocity components a velocity sampled from a

Maxwell-Boltzmann distribution at a given temperature before the first collision occurs.

We only let the central ion collide with atoms at Ta = 2µK. We obtain the secular

temperatures for each mode as in the case for the linear ion crystal by integrating over

the Fourier spectra of the normal mode coordinates. Due to the orders of magnitude

larger micromotion sidebands around the trap frequency of 2 MHz, it is necessary to

increase the frequency resolution by a factor of four and only take a narrow range

around the respective peaks for the integrals into account. Otherwise, the integrals suffer

from a non-neglegible micromotion floor of the Fourier spectra even around the secular

frequencies that can only be suppressed by further increasing the Fourier resolution

towards unfeasible computational effort. To compensate for the already large increase

in computation time due to the large micromotion amplitudes and increased number of

particles compared to the four-ion linear crystal, the atom start sphere size was chosen

to be fixed and only r0 = 0.3µm around the central ion, thus increasing the likelihood

of Langevin collisions but also cutting down the propagation times during a collision.

The results for all 21 modes of a planar seven-ion crystal initialized at 25µK are shown
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Figure 9. Visualization of the normal mode movement for a trapped planar seven-ion

crystal. The arrows indicate the direction and amplitude of the respective mode within

the plane (black) and perpendicular to the plane (red). For each mode the respective

eigenfrequency f th
qu obtained from diagonalization of the secular approximation is

shown.

in Fig. 10. The values were averaged over 120 individual runs. The thermalization of

the modes can be classified into three different groups.

• The modes where the central ion’s motion is not participating at all do not show

significant cooling dynamics (left), besides the y drum (orange dashed) and y wave

(dark red dashed) mode, showing a relatively slow cooling and heating, possibly due

to enhanced nonlinear Coulomb interactions between the ions in these two modes.

• The modes where the central ion participates rather weakly (right, black dashed),

as indicated by the length of the vectors in Fig. 10, show a slow cooling dynamic

over the observed number of collisions.

• The modes where the central ion participates most (right, solid red), x/z blink, x

drop, z pendulum and x double rotation, thermalize the fastest.

The different initial temperatures of each mode are caused by the different coupling
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Figure 10. Thermalization of the secular modes of a hexagonal planar seven-ion

crystal initialized at a secular temperature of 25µK when only the central ion is

colliding with atoms at 2µK. The modes without motional components of the central

ion (left) show almost no dynamic, whereas all other modes (right) thermalize to

temperatures below 20µK.

strength and number of modes each ion is involved in and could in principle be corrected

for, but this is not necessary for the qualitative analysis of the behavior. Remarkably,

the achieved minimum temperatures of the modes that thermalize are all found to

be between 5µK, and 15µK, comparable to the secular temperatures achieved using

the linear four-ion crystal at perfect micromotion compensation, although the average

kinetic energy of the planar crystal Tkin = 700 mK is five orders of magnitude larger due

to the large micromotion amplitudes of the outer ions.

8. Conclusions

In this article we have presented numerical simulations of classical Yb+-Li collisions for

ions trapped in a Paul trap. We presented and tested a numerical framework to simulate

and analyze the collisions using parameters that can be achieved in our experiment,

including all types of micromotion that are observable in real ion traps. We analyzed

the effect of the micromotion on the achievable average kinetic energy of a single ion.

For an ion in an ideal Paul trap and in the limit where Ta → 0, this energy is found to be

at Tkin = 7.60(14)µK. Owing to the large mass ratio, this leads to a collision energy of

Tcol = 0.4 µK which lies well below the s-wave temperature limit. In this situation, the

ion is cooled close to its ground state of motion with n̄ = 1.2 motional quanta remaining

in the secular motion on average.

For the limits for all types of excess micromotion found in our experiment, the

determined collision energies are a factor of 2-11 higher than the s-wave temperature

limit, as it is shown in Table 2. This indicates that better micromotion detection and

compensation is required there. In particular, using a narrow linewidth laser would allow

to put better limits on the axial and quadrature micromotion amplitudes. Another

option may be to use the atoms themselves for accurate micromotion detection as

described in Ref. [13].
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The limits for each experimental parameter that lead to s-wave collisions energies

are also given in Table 2. Although all lie beyond the limits of our current setup,

they are not excessive, as e.g. Härter et al. [13] report a field of Erad ≤ 0.02 V/m

and Eax ≤ 0.06 V/m in a similar system. For the quadrature micromotion, we expect

the given experimental limit of δφrf = 0.65 mrad to be overestimated by at least an

order of magnitude due to the limitations of our detection techniques, as we show in

section 3. The rf phase shift mainly results from unequal length of the connectors,

which is approximately less than ∆xrf ≈ 0.5 mm. Thus, we expect a phase mismatch

on the order of δφrf ≤ δxrf

vrfΩrf
≈ 0.04 mrad for an assumed signal propagation velocity of

vrf ≈ clight/2 half the speed of light. Similarly, we expect that the true axial micromotion

amplitude lies significantly below the experimental limit stated. We conclude that

Yb+/Li may reach the quantum regime with state-of-the-art micromotion compensation.

We do note however that our present analysis is based on classical theory. For excellent

micromotion compensation, a quantum description such as the one developed in [20]

should be generalized to include excess mircomotion and used to predict thermalization

in the ultracold regime.

We found that a buffer-gas cooled linear ion crystal behaves similar as a single ion

and the presence of more than three modes of ion motion does not significantly influence

the achievable collision energies and thermalization rates. A non-vanishing axial gradient

expressed as a qz-parameter leads to a collision energy of Tcol = 26.3µK for a four-ion

crystal and the experimental value of qexp
z = 0.0023. Also shown in the table are the

mean secular energies of the single ion and four ion case along with the mean thermal

occupation numbers for the mode with the lowest frequency (center-of-mass).

Within all simulations, we do not observe runaway heating, as expected, since the

mass of the ion is much larger than the mass of the atom. In the simulations it takes

around Ncol ≈ 550− 600 collisions for a single ion to equilibrate within an atomic cloud

with a density of ρa = 1
4/3πr3

0
≈ 1.1 ·1018 m−3 (i.e. one atom within the interaction sphere

at a time). Within a simulation run using a non-comoving sphere we observe an average

flux Φa of 10000 collisions within 120 ms propagation time, which translates into

ΓLtcol = 2πρa

√
C4

µ

Ncol

Φa

≈ 35− 38 (42)

Langevin collisions that are required for reaching the equilibrium temperature. Luckily,

the chance for an inelastic collision happening during the interaction time, leading to

charge transfer or molecule formation is less than 0.76 % as we recently measured [49].

The cooling rate for a linear ion crystal is comparable to the single ion case, under the

assumption of a homogeneous atomic density all along the ion crystal. Interestingly,

the secular modes of a linear ion crystal equilibrate to slightly higher temperatures than

average when moving in a micromotion direction.

We have shown that collisional cooling of a planar seven-ion crystal by a localized

atomic cloud interacting with only the central ion should be possible. The technique

enables cooling of all the ten modes where the colliding ion participates in. The achieved
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temperatures of these modes are all below 12µK, corresponding to mode occupation

numbers of n̄m = kBTm,sec

~ωm = 2 − 11 phonons. Shuttling the ion crystal to overlap one

of the outer ions with a small atomic cloud at the position of optimal micromotion

compensation should in principle increase the number of cooled modes up to 18 out

of the 21 total modes. Such localized micro-clouds could be implemented by using a

dimple trap as it is described in Ref. [59]. There, the atomic cloud is trapped by a

strongly focused laser beam with a waist of ≤ 1.8µm, thus trapped in a volume much

smaller than the interionic distance, e.g. 14.6µm for the ion crystal investigated in this

article.

Our results show that with modest improvements in micromotion compensation

and detection, reaching the quantum regime of atom-ion collisions can be achieved in

our experiment, enabling buffer-gas cooling of the trapped ion quantum platform close

to the motional ground state and the observation of atom-ion Feshbach resonances.

Param. Value Tkin[µK] Tcol[µK] Tsec[µK] n̄min n̄max

si
n
gl

e

io
n

Erad 0.3 V/m 257(2) 16(3) 20.9(2) 2.6(1) 8.1(1)

Eax 15 V/m 1686(8) 89(4) 86.5(5) 7.0(1) 76.5(1)

δφrf 0.65 mrad 1694(7) 89(4) 75.7(7) 6.4(1) 21.7(1)

fo
u
r

io
n
s

Erad 0.3 V/m 247(2) 16(3) 20.9(2) 2.5(1) 8.0(1)

Eax 15 V/m 1685(7) 89(4) 86.5(5) 7.3(1) 57.7(1)

δφrf 0.65 mrad 1706(6) 90(4) 75.7(7) 6.3(1) 22.0(2)

qz 0.0023 452(4) 26(4) 26.9(1) 2.5(1) 18.0(1)

d
es

ir
ed

Erad < 0.24 V/m 168.4 8.6 - - -

Eax < 4.58 V/m 168.4 8.6 - - -

δφrf < 0.20 mrad 168.4 8.6 - - -

qz < 0.0014 168.4 8.6 - - -

Table 2. Simulation results for the different types of micromotion for the single and

four-ion case. The collision energies kBTcol are all well above the s-wave energy of

Es = kB8.6µK for the given experimental limits. Also shown are the corresponding

minimum and maximum normal mode occupation numbers n̄min/max and the desired

values to reach collision energies below Es for each micromotion case.
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Figure A1. Spatial (left) and velocity (right) distributions of atoms picked on a sphere

with radius 0.6µm and a temperature of 2µK along with the expected probability

densities (black).

Appendix A. Reality checks of the simulation

In this section, we check the accuracy of the simulation algorithm in detail using realistic

trapping fields that can be achieved in our experiment. A summary of the parameters

used in the simulations unless noted otherwise can be found in table 1.

The functionality of the random number generation was checked by analysis of the

distributions of initial atom coordinates for 10000 events sampled at Ta = 2µK on a

sphere of r0 = 0.6µm. By definition, the spatial coordinates automatically lie on the

sphere. It is therefore sufficient to check that each coordinate is uniformly distributed

in the interval [−r0, r0]. For the velocities, the distributions of Eq. 21 must be obtained.

As an example, distributions for ra,1, va,r and va,φ are shown in Fig. A1.

Having a method for the energy determination at hand, it is of importance to

check the negligible influence of the start- and escape sphere sizes for the atoms. If the

sphere radii are picked at the same order as the range of the atom-ion interaction, the

immediate change in potential energy after the insertion and extraction of an atom leads

to unrealistic kicks in the force on the ion. To check the influence of the sphere radii on

the ion temperature, the inner sphere radius r0 was scanned between 0.2 and 1.8 µm.

The thermalization of a single trapped ion initially at rest with a thermal cloud of atoms

at 2µK was simulated. The outer sphere radius r1 was chosen to be 0.5 % bigger than

r0. An example for a thermalization curve (blue points) is shown in Fig. A2 (left). The

curve was obtained by averaging over 656 individual runs and fitted with an exponential

(see Eq. 25) (black line) leading to an equilibrium temperature of Tkin = 11.4(1)µK on

the characteristic time scale of Ncol = 607(2) collisions, using T0 = 0 as the initial ion’s

temperature. The ion’s energy distribution after thermalization is shown in Fig. A2

(right). The blue points were obtained from all ion energies of the 656 runs between

collision 5000 and 10000 and fitted with a thermal distribution (red, dashed) leading to

a temperature of 9.4(2)µK and a thermal distribution with fixed temperature (purple)

obtained from the exponential fit (left). The ion’s energies deviates quite a bit from the

thermal distributions, showing a longer tail towards high energies, which is a well known
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Figure A2. Average kinetic energy of an ion colliding with atoms at 2µK averaged

over 656 runs to obtain the ion’s temperature (left) from an exponential fit (black) and

distribution of the ion’s energies in units of Tkin as defined in Eq. 22 after thermalization

(right) along with a fitted thermal distribution (red, dashed) and a distribution where

the temperature was fixed to the value obtained from the exponential fit (purple).

behavior [16,36,38,40], caused by the additional kinetic energy due to the micromotion

of the ion.

The final temperatures and characteristic number of collisions Ncol required for

equilibration for the different starting radii are shown in Fig. A3 and were obtained

using the exponential fit model given by Eq. 25. For each point, at least 300 runs

were averaged. The equilibrium temperature Tkin of the ion shows no dependence on
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Figure A3. Equilibrium temperature Tkin as defined in Eq. 22 (left) and characteristic

number of collisions Ncol (right) for an ion colliding with atoms at 2µK versus the

starting distance r0 between atom and ion. While the equilibrium temperature does

not depend on r0 in the scanned regime, the characteristic number of collisions increases

quadratically. The lines show a constant (left) and quadratic fit (right).

the starting sphere size r0, whereas Ncol shows a quadratic behavior over the scanned

range. This behavior can be qualitatively explained by the nature of Langevin collisions.

For a given collision energy Ecol, every atom with an impact parameter smaller than

bc = (2C4/Ecol)
1/4 undergoes a Langevin collision and can therefore cause a large energy

and momentum transfer that contributes to the thermalization process. The fraction of
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atoms that undergo a Langevin collision PL and therefore fly into the solid angle element

defined by bc is then given by PL = (1 − cos (bc/r0)) ≈ 1/2(bc/r0)2. For an increasing

r0 this automatically demands for a quadratic increase in the required number of total

collisions to equilibrate. Unless noted otherwise, r0 = 0.6µm is used in all further

simulations as a trade-off between simulation time and realistic atomic densities (see

e.g. [60]). Demanding only one atom at a time inside the sphere around one of the ions

results in a density of ρa = 1
4/3πr3

0Nions
< 1.1 · 1018 m−3.

To realistically model the atom-ion interaction, one needs to check as well that the

temperature of the ion does not strongly depend on the choice of the hard-core radius

parameter C6 as introduced in Eq. 17. In reality, a repulsive barrier is expected to be at a

distance, where the electronic wavefunctions of the atom and ion begin to significantly

overlap, typically in the range of hundreds of picometers to a few nanometers. The

parameter C6 was therefore scanned in a range between 5 · 10−14 m2 to 5 · 10−21 m2,

effectively varying the position of the classical turning point rhc =
√

2C6 between 0.1 nm

and 316 nm. The results for both final ion temperature Tkin and collisions required for

equilibration Ncol are shown in Fig. A4. The points were obtained by averaging the

ion’s average kinetic energy over at least 300 runs and fitting it according to Eq. 25.

For a broad range of barrier radii the final temperature of the ion remains at the same
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Figure A4. Equilibrium temperature Tkin as defined in Eq. 22 (left) and characteristic

number of collisions Ncol (right) for an ion colliding with atoms at 2µK versus the

repulsive barrier radius rhc. The red points were obtained using a higher numerical

precision as explained in the text.

level. For values bigger than rhc = 10 nm the potential is more and more dominated by

the repulsive term proportional to C6, preventing Langevin collisions and therefore the

ion from micromotion-induced heating as we describe it in our work Ref. [41], where a

repulsive barrier is utilized to prevent exactly this heating mechanism. For the smallest

value of rhc = 0.1 nm, the ion temperature seems to be a factor of 1.5 higher than in

the regime between 0.3 to 10 nm, which can be explained by numerical errors due to the

increasing steepness of the hard core barrier for low values of rhc leading to large changes

in acceleration in a hard core collision. Therefore, this point was simulated again with a

five times smaller tolerance in the adaptive step-size Runge-Kutta propagator, leading
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to the red points, in agreement with the values for larger rhc. The number of collisions

required for thermalization Ncol seems to first slightly decrease for higher values of rhc

but shows a dramatic increase by around a factor of two at rhc = 77 nm. Note that at this

point the potential energy minimum caused by the attractive C4-term of the potential

becomes comparable to the collision energy, dominated by the atom temperature of

2µK. Therefore, the intermediately released kinetic energy during a Langevin collision

becomes negligible. For even higher values of rhc the thermalization process speeds up

again due to the quadratically increasing geometric cross section for repulsive collisions.

For all further simulations, rhc = 1 nm is used, which is around three times larger than

the classical turning point of the Li-Yb+ system [29,49] but still produces similar results

with less numerical effort due to the weaker forces involved.

During propagation, the Runge-Kutta propagator adjusts the size of the time steps

in order to stay below a given relative accuracy parameter ptol. It therefore propagates

the system once by a full time step and once by two half time steps and compares the

relative difference in propagated coordinates between both methods. If the maximum

relative difference between one of the coordinates (including velocity) is bigger than

the desired tolerance, the propagation step is repeated using an adjusted time step.

To ensure a sufficiently small tolerance ptol, further tests were performed. Firstly,

the allowed tolerance was scanned from ptol = 10−5 to 10−15 as a parameter for the

propagation of a single ion starting at a randomly chosen kinetic energy sampled from

a thermal Distribution at Tkin = 13µK, leading to Ekin/kB = 20.5µK in the presented

case. The trajectories including the velocities for the individual runs were stored to

compute the relative deviation in kinetic energy for each tolerance with the one from

the smallest value‡, ptol = 10−15 ,

δEkin(ptol) =

∣∣∣∣Ekin(ptol)− Ekin(10−15)

Ekin(10−15)

∣∣∣∣ . (A.1)

Because collisions with atoms can cause a dramatically different change in trajectory

for each tolerance, no atoms were introduced in this test. The ions were propagated

for 120 ms, a timescale that typically corresponds to 10000 collisions in the simulation.

Due to the large amount of data, the trajectories were stored only during the last

millisecond of propagation. The resulting relative deviations δEkin(ptol) are shown in

Fig. A5 (left). Due to the adaptive step-size algorithm, it is not possible to have the

trajectories for each tolerance stored at the exact same time steps each, therefore the

kinetic energy δEkin(10−15) was interpolated using cubic polynomials to match the time

grid of the other tolerances, possibly leading to a small amount of interpolation noise.

For clarity, only the values for ptol = 10−6 (green), 10−10 (blue) and 10−14 (red) are shown

along with their time averages (straight lines). In Fig. A5 (right) the time averaged

deviations for the other values of ptol are shown, approximately following an exponential

behavior (solid line) with exponent n ≈ 0.78 . While for a tolerance of ptol = 10−6 the

‡ Note that values of ptol < 10−15 can cause numerical instabilities due to the close by machine

precision limit ε for which the numerical addition/subtraction 1.0 ± ε = 1.0. On a 64-bit computer,

ε ≈ 2.22 · 10−16 for double precision floating point numbers, according to the IEEE-754 standard.
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Figure A5. Relative deviations in kinetic energy for a single trapped ion for different

values of the adaptive step-size algorithm tolerance ptol versus propagation time (left).

For clarity only the values for ptol = 10−6 (green), 10−10 (blue) and 10−14 is shown

in the left plot, along with the time averages (lines). The time averages for the other

scanned tolerances are shown on the right, along with an exponential fit.

time averaged relative deviation is < 11 %, ptol = 10−8 delivers acceptable values of

〈δEkin(ptol)〉 ≤ 0.2 % already.

Similar to the tests for C6 and r0, also the influence of the tolerance parameter

ptol on the final ion temperature Tkin and required collisions Ncol to equilibrate was

investigated. The results are shown in Fig. A6. Each point was obtained from taking

the average of Ēkin over at least 300 individual runs and fitting the curves according to

Eq. 25. Both observables do not change significantly from ptol = 10−12 to 10−6, only the
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Figure A6. Final ion temperature Tkin (left) and characteristic number of collisions

required to equilibrate Ncol (right) for an ion colliding with atoms at 2µK versus

tolerance parameter ptol used in the adaptive step-size propagator. The inset shows a

magnified version of the plot from ptol = 10−12 to 10−6.

point at ptol = 10−5 shows a dramatic increase in both Tkin and Ncol due to increasing

numerical errors. For all further simulations ptol = 10−10 is used (unless noted otherwise)

as a trade-off between precision and computational effort.

A final check for both energy conservation of the propagator during collisions as

well as physical behavior of the system is to investigate the secular case, where the time-
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dependent trapping potential of the Paul trap is replaced by a 3D harmonic oscillator

potential with the secular trap frequencies of the Paul trap. From a thermodynamic

point of view, the ion should then thermalize to the same temperature as the atomic

bath and the total energy during each collision should be conserved since no micromotion

energy can be transferred to the secular oscillation. The resulting thermalization curve,

averaged over 608 individual runs along with a histogram of the energy distribution is

shown in Fig. A7. The histogram was taken from all points between collision 3000 and
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Figure A7. Thermalization curve of a single ion trapped in harmonic oscillator

potential colliding with atoms at 2µK, using the secular trap frequencies of the

employed Paul trap potential (left). The distribution of average kinetic energies

according to Eq. 22 in units of Tkin (right) shows a perfect thermal behavior. The

exponential fit (left) as well as the fitted thermal distribution lead to a final temperature

of Tion = 2µK.

5000 and is in perfect agreement with a thermal distribution (solid line) at 2µK, the

same temperature as the atomic bath. Also the exponential fit of the thermalization

curve (left) leads to the same value, thus indicating a correct physical behavior of the

numerical model.

To finally investigate the energy conservation of the collisions, the energy transfer

between atom and ion in each collision was investigated by comparing the atom and

ion energies before and after a collision, at the points in time t0 when an atom is

introduced on the sphere with radius r0 with the point in time t1 when that atom

escapes the sphere defined by r1. The energy transfer on an ion trapped in the harmonic

oscillator potential is shown in Fig. A8 (right), taken from one of the 608 individual runs

from the simulation used for Fig. A7 (left). The plot shows the ion’s energy transfer

∆Eion = Eion(t1) − Eion(t0) for each collision and ranges on scales limited by the atom

energies. For the atom, a corresponding curve can be obtained. In Fig. A8 (right) the

level of energy conservation |∆Eion + ∆Eatom| is shown. The averaged error in total

energy in each step is less than 0.12 nK (dark blue line) and therefore negligible on the

typical energy scales of the simulations. Note that this error is mainly caused by the

sudden but tiny jump in potential energy when the atom is introduced and extracted.

With reasonable effort this could be corrected in the energy determination and atom

injection scheme, but is only of interest for much higher densities and lower temperatures
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Figure A8. Change in energy of a harmonically trapped ion within each collision

with atoms at 2µK (left) and total change in energy of the atom-ion system for each

collision (right). The solid line shows the averaged energy gain of the system per

collision.

that may anyways require a quantum mechanical treatment. We therefore conclude that

the employed propagator produces physical results with reasonable precision.

Appendix B. Reality checks of the Fourier method

In this section, we check the accuracy of the presented Fourier method for determining

the average kinetic energy of an ion crystal. Unless stated otherwise, we use a linear

chain of four ions at around 100µK and let them thermalize by collisions with a cloud

of atoms at 2µK.

To test the Fourier analysis method for obtaining the temperature of an ion crystal,

we compare the temperature Tfft of Eq. 39 with the temperature obtained from the

average kinetic energy Tkin (Eq. 22) as shown in Fig. B1. For a step-size of ∆tfft = 50 ns,

sufficient to resolve frequency components of up to fmax = 20 MHz, there is no significant

improvement when increasing the number of steps from 16384 (red) to 32768 (black),

the relative deviation from Tfft to Tkin is at around 2.5 % on average over a broad

range of temperatures. This leads to the conclusion that a frequency resolution of

∆ffft = 1/(Nfft∆tfft) ≈ 1.2 kHz is a good choice.

To find a sufficient number of grid points while leaving the frequency resolution

constant, we vary ∆tfft inversely with Nfft, as shown in Fig. B2. For all combinations

with ∆tfft ≤ 200 ns, the relative deviation from Tkin is approximately the same. At

∆tfft = 400 ns (gray) the maximum resolvable frequency is fmax = 2.5 MHz, being too

close to the micromotion sidebands at around frf = 2.0 MHz and therefore leading to a

much lower energy, dominated by only the low frequency parts. To be on the safe side,

we chose the combination ∆tfft = 50 ns and Nfft = 16384 for our system.

While during the collision processes very fast dynamics demanding for an

adaptive step size algorithm may occur, the fastest timescale during the temperature

determination is set by the micromotion oscillation at frf = 2 MHz in the case for

q2
z � 1. Therefore, a fixed step-size propagator with ∆tkin � 1/frf is sufficient.
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Figure B1. Average kinetic energy of a four-ion crystal colliding with thermal atoms

at 2µK (left) obtained by the Fourier method (see Eq. 38,39) The ions start at an

initial temperature of around 100µK. The Fourier spectra were obtained at different

Nfft and a constant ∆tfft = 50 ns, thus effectively varying the frequency spacing. As a

reference, the temperature obtained from Ēkin (see Eq. 22) is shown (yellow), averaging

over 8 ms in steps of 5 ns. The curves for Nfft = 16384 (red) and 32768 (black) steps

are almost on top of each other, as it can be also seen in the relative deviation from

Tkin (right).
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Figure B2. Average kinetic energy of a four-ion crystal colliding with atoms at 2µK

(left) obtained by the fourier method for several combinations of fourier grid sizes Nfft

and grid spacings ∆tfft, resembling a variation of the maximally resolvable frequency

fmax. All curves besides for Nfft = 2048 (gray) lie on top of each other, deviating from

the average kinetic energy Tkin by less than 5 % (right).

In order to save computation time, we use the same fixed step-size propagator for

the Fourier transformation energy determination as for obtaining the average kinetic

energy. We therefore choose the time grid to be integer subdivisions of the Fourier grid,

∆tkin = ∆tfft/n, n ∈ N. To find a sufficiently small ∆tkin to resolve the micromotion

oscillations at frf = 2 MHz, we compare the kinetic temperature as defined in Eq. 22 for

different propagation time steps ∆tkin with the temperature obtained using the smallest

time step 2.5 ns as a reference. For time steps up to 40 ns we obtain relative deviations of

less than 0.05 % from the kinetic energy derived using time steps of 2.5 ns when averaged

over 8 ms propagation time over the whole temperature range. To be on the safe side,

we chose ∆tkin = ∆tfft/10 = 5 ns.
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Figure B3. Visualization of the normal mode movement for a trapped linear four-

ion crystal in descending order with respect to the eigenmode frequency. The arrows

indicate the direction and amplitude of the respective mode. The modes are shown

along with their respective eigenfrequencies f th
qu obtained from the diagonalization

of the secular approximation and the values ffft
qu obtained numerically from Fourier

analysis of the mode spectra. Typical names of the modes are shown on the right

column. The center-of-mass (c.o.m.) modes represent the upper and lower limit of the

frequencies.

Appendix C. Excess micromotion in a linear four-ion crystal

The obtained results for average kinetic energy and secular energy are shown in Fig. C1.

Each point was fit by averaging over at least 30 individual runs. The resulting

average kinetic energies expressed as Tkin (left) follow approximately the same quadratic

behavior as in the case of a single ion, indicating that the main part of the kinetic

energy is stored in the micromotion. The quadratic fits (solid blue lines) lead to the

increase parameters θErad
= 7.45(3)µK · (V/m)−2, θEax = 2705(15)µK · (V/m)−2 and

θδφrf
= 4005(16)µK ·mrad−2, in almost perfect agreement with the single ion case. For
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Figure C1. Average kinetic energy of a linear four-ion crystal colliding with atoms

at 2µK (left, blue) expressed as Tkin and temperature of the secular motion (right)

versus micromotion causing parameters. The results for the kinetic energy were fit with

quadratic function (solid blue curves). The dashed blue curves show the approximate

theoretical amount of energy stored in the excess micromotion according to Eqs. 10, 13

and 16 respectively. The red points correspond to simulated values for the non-

interacting case, in approximate agreement with the theoretical behavior. The dashed

gray lines indicate the s-wave temperature limit. The secular part of the average

kinetic energy is shown on the right. The insets show the difference between the solid

and dashed blue curves, resembling the micromotion induced heating. Green points

were obtained using a fixed starting/escape sphere, blue with a comoving sphere.
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all three cases the theoretical approximate energies due to the micromotion is shown as

dashed blue lines. To verify the validity of these curves, the average kinetic energy for

a crystal without atoms, initialized at zero secular temperature was simulated as well

(red points). Only for the case of radial excess micromotion the theoretical prediction

(dashed blue) deviates significantly from the red points, indicating the approximate

nature of the prediction at high radial micromotion amplitudes.

To quantify the micromotion-induced heating effect on the secular motion, the

secular temperature was extracted as described in section 5. In all three cases the

dependence on the scanned parameter seems to be a bit weaker than quadratic. The

temperature dependence of the individual modes is discussed in section 6.4.

In all three cases, the number of collisions required to equilibrate (not shown in the

figures) show a similar behavior as in the single ion case, besides the fact that they are

Nions = 4 times higher because of the reduced effective density of atoms.
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