925 research outputs found

    Daytime plasma drifts in the equatorial lower ionosphere

    Get PDF
    We have used extensive radar measurements from the Jicamarca Observatory during low solar flux periods to study the quiet time variability and altitudinal dependence of equatorial daytime vertical and zonal plasma drifts. The daytime vertical drifts are upward and have largest values during September-October. The day-to-day variability of these drifts does not change with height between 150 and 600 km, but the bimonthly variability is much larger in the F region than below about 200 km. These drifts vary linearly with height generally increasing in the morning and decreasing in the afternoon. The zonal drifts are westward during the day and have largest values during July-October. The 150 km region zonal drifts have much larger day-to-day, but much smaller bimonthly variability than the F region drifts. The daytime zonal drifts strongly increase with height up to about 300 km from March through October, and more weakly at higher altitudes. The December solstice zonal drifts have generally weaker altitudinal dependence, except perhaps below 200 km. Current theoretical and general circulation models do not reproduce the observed altitudinal variation of the daytime equatorial zonal drifts. © 2015 American Geophysical Union. All Rights Reserved

    Longitudinal dependence of middle and low latitude zonal plasma drifts measured by DE-2

    Get PDF
    We used ion drift observations from the DE-2 satellite to study for the first time the longitudinal variations of middle and low latitude <i>F</i> region zonal plasma drifts during quiet and disturbed conditions. The quiet-time middle latitude drifts are predominantly westward; the low latitude drifts are westward during the day and eastward at night. The daytime quiet-time drifts do not change much with longitude; the nighttime drifts have strong season dependent longitudinal variations. In the dusk-premidnight period, the equinoctial middle latitude westward drifts are smallest in the European sector and the low latitude eastward drifts are largest in the American-Pacific sector. The longitudinal variations of the late night-early morning drifts during June and December solstice are anti-correlated. During geomagnetically active times, there are large westward perturbation drifts in the late afternoon-early night sector at upper middle latitudes, and in the midnight sector at low latitudes. The largest westward disturbed drifts during equinox occur in European sector, and the smallest in the Pacific region. These results suggest that during equinox SAPS events occur most often at European longitudes. The low latitude perturbation drifts do not show significant longitudina

    Storm-Time Thermospheric Winds Over Peru

    Get PDF
    We used Fabry-Perot Interferometer (FPI) observations at Jicamarca, Nasca and Arequipa, Peru from 2011 to 2017 to study the nighttime zonal and meridional disturbance winds over the Peruvian equatorial region. We derived initially the seasonal-dependent average thermospheric winds corresponding to 12 hours of continuous geomagnetically quiet conditions. These quiet-time climatological winds, which are in general agreement with results from the Horizontal Wind Model (HWM14), were then used as baselines for the calculation of the disturbance winds. Our results indicate that the nighttime zonal disturbance winds are westward with peak values near midnight and with magnitudes much larger than predicted by the Disturbance Wind Model (DWM07). The premidnight equinoctial and June solstice westward disturbance winds have comparable values and increase with local time. The postmidnight westward disturbance winds decrease towards dawn and are largest during equinox and smallest during June solstice. The meridional average disturbance winds have small values throughout the night. They are northward in the premidnight sector, and southward with larger (smaller) values during December solstice (equinox) in the postmidnight sector. We also present observations showing that during the main and recovery phases of the April 2012 and May 2016 geomagnetic storms the zonal disturbance winds have much larger magnitudes and lifetimes (up to about 48 hours) than suggested by the HWM14. These observations highlight the importance of longer-term disturbance wind effects. The large and short-lived (about 2 hours) observed meridional wind disturbances are not reproduced by current climatological empirical models

    Global features of the disturbance winds during storm time deduced from CHAMP observations

    Get PDF
    A wind-driven disturbance dynamo has been postulated many decades ago. But due to the sparseness of thermospheric wind measurements, details of the phenomena could not be investigated. In this study we use the CHAMP zonal wind observations from 2001 to 2005 to investigate the global features of the disturbance winds during magnetically disturbed periods. The disturbance zonal wind is mainly westward, which increases with magnetic activity and latitude. At subauroral region, the westward zonal wind is strongly enhanced in the magnetic local time (MLT) sector from afternoon to midnight, which we relate to the plasma drift within the subauroral polarization streams. At middle and low latitudes, the disturbance zonal wind is largely independent of season. Peak values of the disturbance zonal wind occur at different MLTs for different latitudes. That is around 1800MLT at subauroal region, with average values of about 200m/s; around 2300 MLT at middle latitudes, with average values of about 80m/s; and around 0300MLT at low latitudes, with average values up to 50m/s. The shift of the peak values of the westward disturbance zonal wind in local time at different latitudes could be considered as a response of the disturbance wind when it propagates from high to low latitudes. Further by applying for the first time a superposed epoch analysis, we show that the disturbance zonal wind responds with a delay to the sudden changes of solar wind input, which is different for the various latitudinal ranges. The propagation time of disturbance wind from the auroral region to the equator is about 3-4h. This is consistent with the speed of traveling atmospheric disturbances. Based on CHAMP observations, we try to illustrate the whole chain of processes from the solar wind driving to the ionospheric effects at lower latitudes. ©2015. American Geophysical Union. All Rights Reserved

    Equatorial Disturbance Dynamo Vertical Plasma Drifts Over Jicamarca: Bi‐Monthly and Solar Cycle Dependence

    Get PDF
    We use extensive incoherent scatter radar observations from the Jicamarca Radio Observatory to study the local time and bi‐monthly dependence of the equatorial disturbance dynamo vertical plasma drifts on solar flux and geomagnetic activity. We show that the daytime disturbance drifts have generally small magnitudes with largest values before noon and an apparent annual variation. Near dusk, they are downward throughout the year with largest values during the equinoxes and smallest during June solstice. These downward drifts increase strongly with solar flux, and shift to later local times. They also increase with increasing geomagnetically active conditions with no apparent local time shift. The equinoctial evening downward disturbance drifts are larger during the autumnal equinox than during the vernal equinox. The nighttime disturbance drifts are upward and have small seasonal and solar cycle dependence but increase strongly with geomagnetic activity, particularly in the late night sector. Our results are in general agreement with those from previous theoretical and experimental studies, except near dusk where our results show much stronger seasonal and solar cycle dependence

    Thermo-optic noise in coated mirrors for high-precision optical measurements

    Get PDF
    Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO

    Equatorial vertical drift modulation by the lunar and solar semidiurnal tides during the 2013 sudden stratospheric warming

    Get PDF
    During the 2013 stratospheric sudden warming (SSW) period the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar at Jicarmarca, Peru, observed low-latitude vertical drift modulation with lows of 0-12 m/s daytime maximum drifts between 6-13 and 22-25 January and enhanced drifts up to 43 m/s between 15 snd 19 January. The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model reproduces the prevailing vertical drift feature and is used to examine possible causes. The simulations indicate that the modulation of the vertical drift is generated by the beating of the semidiurnal solar SW2 and lunar M2 tides. During the SSW period the beating is observable since the magnitudes of lunar and solar semidiurnal tidal amplitudes are comparable. The theoretical beating frequency between SW2 and M2 is 1/(15.13 day) which may be modified due to phase changes. This study highlights the importance of the lunar tide during SSW periods and indicates that the equatorial vertical drift modulation should be observable at other longitudes as well. Ω2016. American Geophysical Union. All Rights Reserved

    Coherent and incoherent scatter radar study of the climatology and day-to-day variability of mean F region vertical drifts and equatorial spread F

    Get PDF
    We conducted a comprehensive analysis of the vertical drifts and equatorial spread F (ESF) measurements made by the Jicamarca incoherent scatter radar (ISR) between 1994 and 2013. The ISR measurements allowed us to construct not only updated climatological curves of quiet-time vertical plasma drifts but also time-versus-height maps of ESF occurrence over the past two solar cycles. These curves and maps allowed us to better relate the observed ESF occurrence patterns to features in the vertical drift curves than previously possible. We identified an excessively high occurrence of post-midnight F region irregularities during December solstice and low solar flux conditions. More importantly, we also found a high occurrence of ESF events during sudden stratospheric warming (SSW) events. We also proposed and evaluated metrics of evening enhancement of the vertical drifts and ESF occurrence, which allowed us to quantify the relationship between evening drifts and ESF development. Based on a day-to-day analysis of these metrics, we offer estimates of the minimum pre-reversal enhancement (PRE) peak (and mean PRE) values observed prior to ESF development for different solar flux and seasonal conditions. We also found that ESF irregularities can reach the altitudes at least as high as 800 km at the magnetic equator even during low solar flux conditions. ©2015. American Geophysical Union. All Rights Reserved

    Radar Studies of Height-Dependent Equatorial F Region Vertical and Zonal Plasma Drifts

    Get PDF
    We present the results of an analysis of long-term measurements of ionospheric F region E × B plasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement with previous height-averaged climatological results of vertical and zonal plasma drifts, despite that they are obtained from different sets of measurements. More importantly, our results quantify average height variations in the drifts. The results show, for example, the solar flux control over the height variation of the vertical drifts. The results also show the weak dependence of the daytime zonal drift profiles on solar and seasonal variations. We quantify the effects of seasonal and solar flux variations on the morphology of the vertical shear in the zonal plasma drifts associated with the evening plasma vortex. Assuming interchangeability between local time and longitude, we tested the curl-free condition for the F region electric fields with very good results for all seasons and solar flux conditions. We envision the use of our results to aid numerical modeling of ionospheric electrodynamics and structuring and to assist with the interpretation of satellite observations of low-latitude plasma drifts
    corecore