19 research outputs found

    Comparative transcriptome analysis of genes involved in paradormant bud release response in ‘Summer Black’ grape

    Get PDF
    Grapevines possess a hierarchy of buds, and the fruitful winter bud forms the foundation of the two-crop-a-year cultivation system, yielding biannual harvests. Throughout its developmental stages, the winter bud sequentially undergoes paradormancy, endodormancy, and ecodormancy to ensure survival in challenging environmental conditions. Releasing the endodormancy of winter bud results in the first crop yield, while breaking the paradormancy of winter bud allows for the second crop harvest. Hydrogen cyanamide serves as an agent to break endodormancy, which counteracting the inhibitory effects of ABA, while H2O2 and ethylene function as signaling molecules in the process of endodormancy release. In the context of breaking paradormancy, common agronomic practices include short pruning and hydrogen cyanamide treatment. However, the mechanism of hydrogen cyanamide contributes to this process remains unknown. This study confirms that hydrogen cyanamide treatment significantly improved both the speed and uniformity of bud sprouting, while short pruning proved to be an effective method for releasing paradormancy until August. This observation highlights the role of apical dominance as a primary inhibitory factor in suppressing the sprouting of paradormant winter bud. Comparative transcriptome analysis revealed that the sixth node winter bud convert to apical tissue following short pruning and established a polar auxin transport canal through the upregulated expression of VvPIN3 and VvTIR1. Moreover, short pruning induced the generation of reactive oxygen species, and wounding, ethylene, and H2O2 collectively acted as stimulating signals and amplified effects through the MAPK cascade. In contrast, hydrogen cyanamide treatment directly disrupted mitochondrial function, resulting in ROS production and an extended efficacy of the growth hormone signaling pathway induction

    Integrated Transcriptome and Metabolome Analysis Revealed the Causal Agent of Primary Bud Necrosis in ‘Summer Black’ Grape

    No full text
    Primary bud necrosis of grape buds is a physiological disorder that leads to decreased berry yield and has a catastrophic impact on the double cropping system in sub-tropical areas. The pathogenic mechanisms and potential solutions remain unknown. In this study, the progression and irreversibility patterns of primary bud necrosis in ‘Summer Black’ were examined via staining and transmission electron microscopy observation. Primary bud necrosis was initiated at 60 days after bud break and was characterized by plasmolysis, mitochondrial swelling, and severe damage to other organelles. To reveal the underlying regulatory networks, winter buds were collected during primary bud necrosis progression for integrated transcriptome and metabolome analysis. The accumulation of reactive oxygen species and subsequent signaling cascades disrupted the regulation systems for cellular protein quality. ROS cascade reactions were related to mitochondrial stress that can lead to mitochondrial dysfunction, lipid peroxidation causing damage to membrane structure, and endoplasmic reticulum stress leading to misfolded protein aggregates. All these factors ultimately resulted in primary bud necrosis. Visible tissue browning was associated with the oxidation and decreased levels of flavonoids during primary bud necrosis, while the products of polyunsaturated fatty acids and stilbenes exhibited an increasing trend, leading to a shift in carbon flow from flavonoids to stilbene. Increased ethylene may be closely related to primary bud necrosis, while auxin accelerated cell growth and alleviated necrosis by co-chaperone VvP23-regulated redistribution of auxin in meristem cells. Altogether, this study provides important clues for further study on primary bud necrosis

    As It Stands: The Palouse Wild Cider Apple Breeding Program

    No full text
    Providing hands-on education for the next generation of plant breeders would help maximize effectiveness of future breeding efforts. Such education should include training in introgression of crop wild relative alleles, which can increase genetic diversity while providing cultivar attributes that meet industry and consumer demands in a crop such as cider apple. Incorporation of DNA information in breeding decisions has become more common and is another skill future plant breeders need. The Palouse Wild Cider apple breeding program (PWCabp) was established at Washington State University in early 2014 as a student-run experiential learning opportunity. The objectives of this study were to describe the PWCabp’s approaches, outcomes, and student involvement to date that has relied on a systematic operational structure, utilization of wild relatives, and incorporation of DNA information. Students chose the crop (cider apple) and initial target market and stakeholders (backyard growers and hobbyists of the Palouse region). Twelve target attributes were defined including high phenolics and red flesh. Phase one and two field trials were established. Two promising high-bitterness selections were identified and propagated. By running the PWCabp, more than 20 undergraduate and graduate students gained experience in the decisions and operations of a fruit breeding program. PWCabp activities have produced desirable new germplasm via utilization of highly diverse Malus germplasm and trained new plant breeding professionals via experiential learning

    Elucidating the genetic background of the early-flowering transgenic genetic stock T1190 with a high-density SNP array

    No full text
    Apple trees have a long juvenile period, which makes apple genetic improvement via breeding costly and time-consuming. Transgenic genetic stocks carrying the early-flowering gene BpMADS4 have been used to reduce the juvenility of apple from five or more years to less than 10 months. One such genetic stock, T1190, has been used widely in breeding and research. It was reported to be a seedling of ‘Pinova’ but the other parent was unknown. Not knowing the alleles that this unknown parent contributed to T1190 brings uncertainties to breeding programs and research studies. In this study, the full pedigree of the genetic stock T1190 was reconstructed using an apple 20K SNP array and a panel of 530 reference cultivars and breeding selections. T1190 was determined to be an offspring of ‘Pinova’ and ‘Idared’. The full pedigree of T1190 was used to deduce the mosaic ancestor composition of the transgene-hosting chromosome. Such knowledge is useful to ensure breeding programs and research studies achieve their expected objectives.</p

    Image_3_Comparative transcriptome analysis of genes involved in paradormant bud release response in ‘Summer Black’ grape.jpeg

    No full text
    Grapevines possess a hierarchy of buds, and the fruitful winter bud forms the foundation of the two-crop-a-year cultivation system, yielding biannual harvests. Throughout its developmental stages, the winter bud sequentially undergoes paradormancy, endodormancy, and ecodormancy to ensure survival in challenging environmental conditions. Releasing the endodormancy of winter bud results in the first crop yield, while breaking the paradormancy of winter bud allows for the second crop harvest. Hydrogen cyanamide serves as an agent to break endodormancy, which counteracting the inhibitory effects of ABA, while H2O2 and ethylene function as signaling molecules in the process of endodormancy release. In the context of breaking paradormancy, common agronomic practices include short pruning and hydrogen cyanamide treatment. However, the mechanism of hydrogen cyanamide contributes to this process remains unknown. This study confirms that hydrogen cyanamide treatment significantly improved both the speed and uniformity of bud sprouting, while short pruning proved to be an effective method for releasing paradormancy until August. This observation highlights the role of apical dominance as a primary inhibitory factor in suppressing the sprouting of paradormant winter bud. Comparative transcriptome analysis revealed that the sixth node winter bud convert to apical tissue following short pruning and established a polar auxin transport canal through the upregulated expression of VvPIN3 and VvTIR1. Moreover, short pruning induced the generation of reactive oxygen species, and wounding, ethylene, and H2O2 collectively acted as stimulating signals and amplified effects through the MAPK cascade. In contrast, hydrogen cyanamide treatment directly disrupted mitochondrial function, resulting in ROS production and an extended efficacy of the growth hormone signaling pathway induction.</p

    Table_1_Comparative transcriptome analysis of genes involved in paradormant bud release response in ‘Summer Black’ grape.xlsx

    No full text
    Grapevines possess a hierarchy of buds, and the fruitful winter bud forms the foundation of the two-crop-a-year cultivation system, yielding biannual harvests. Throughout its developmental stages, the winter bud sequentially undergoes paradormancy, endodormancy, and ecodormancy to ensure survival in challenging environmental conditions. Releasing the endodormancy of winter bud results in the first crop yield, while breaking the paradormancy of winter bud allows for the second crop harvest. Hydrogen cyanamide serves as an agent to break endodormancy, which counteracting the inhibitory effects of ABA, while H2O2 and ethylene function as signaling molecules in the process of endodormancy release. In the context of breaking paradormancy, common agronomic practices include short pruning and hydrogen cyanamide treatment. However, the mechanism of hydrogen cyanamide contributes to this process remains unknown. This study confirms that hydrogen cyanamide treatment significantly improved both the speed and uniformity of bud sprouting, while short pruning proved to be an effective method for releasing paradormancy until August. This observation highlights the role of apical dominance as a primary inhibitory factor in suppressing the sprouting of paradormant winter bud. Comparative transcriptome analysis revealed that the sixth node winter bud convert to apical tissue following short pruning and established a polar auxin transport canal through the upregulated expression of VvPIN3 and VvTIR1. Moreover, short pruning induced the generation of reactive oxygen species, and wounding, ethylene, and H2O2 collectively acted as stimulating signals and amplified effects through the MAPK cascade. In contrast, hydrogen cyanamide treatment directly disrupted mitochondrial function, resulting in ROS production and an extended efficacy of the growth hormone signaling pathway induction.</p

    Image_4_Comparative transcriptome analysis of genes involved in paradormant bud release response in ‘Summer Black’ grape.jpeg

    No full text
    Grapevines possess a hierarchy of buds, and the fruitful winter bud forms the foundation of the two-crop-a-year cultivation system, yielding biannual harvests. Throughout its developmental stages, the winter bud sequentially undergoes paradormancy, endodormancy, and ecodormancy to ensure survival in challenging environmental conditions. Releasing the endodormancy of winter bud results in the first crop yield, while breaking the paradormancy of winter bud allows for the second crop harvest. Hydrogen cyanamide serves as an agent to break endodormancy, which counteracting the inhibitory effects of ABA, while H2O2 and ethylene function as signaling molecules in the process of endodormancy release. In the context of breaking paradormancy, common agronomic practices include short pruning and hydrogen cyanamide treatment. However, the mechanism of hydrogen cyanamide contributes to this process remains unknown. This study confirms that hydrogen cyanamide treatment significantly improved both the speed and uniformity of bud sprouting, while short pruning proved to be an effective method for releasing paradormancy until August. This observation highlights the role of apical dominance as a primary inhibitory factor in suppressing the sprouting of paradormant winter bud. Comparative transcriptome analysis revealed that the sixth node winter bud convert to apical tissue following short pruning and established a polar auxin transport canal through the upregulated expression of VvPIN3 and VvTIR1. Moreover, short pruning induced the generation of reactive oxygen species, and wounding, ethylene, and H2O2 collectively acted as stimulating signals and amplified effects through the MAPK cascade. In contrast, hydrogen cyanamide treatment directly disrupted mitochondrial function, resulting in ROS production and an extended efficacy of the growth hormone signaling pathway induction.</p
    corecore