706 research outputs found
Embedding problems of division algebras
A finite group G is called admissible over a given field if there exists a
central division algebra that contains a G-Galois field extension as a maximal
subfield. We give a definition of embedding problems of division algebras that
extends both the notion of embedding problems of fields as in classical Galois
theory, and the question which finite groups are admissible over a field. In a
recent work by Harbater, Hartmann and Krashen, all admissible groups over
function fields of curves over complete discretely valued fields with
algebraically closed residue field of characteristic zero have been
characterized. We show that also certain embedding problems of division
algebras over such a field can be solved for admissible groups.Comment: 19 page
Decoherence and the rate of entropy production in chaotic quantum systems
We show that for an open quantum system which is classically chaotic (a
quartic double well with harmonic driving coupled to a sea of harmonic
oscillators) the rate of entropy production has, as a function of time, two
relevant regimes: For short times it is proportional to the diffusion
coefficient (fixed by the system--environment coupling strength). For longer
times (but before equilibration) there is a regime where the entropy production
rate is fixed by the Lyapunov exponent. The nature of the transition time
between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include
Time-dependent unitary perturbation theory for intense laser driven molecular orientation
We apply a time-dependent perturbation theory based on unitary
transformations combined with averaging techniques, on molecular orientation
dynamics by ultrashort pulses. We test the validity and the accuracy of this
approach on LiCl described within a rigid-rotor model and find that it is more
accurate than other approximations. Furthermore, it is shown that a noticeable
orientation can be achieved for experimentally standard short laser pulses of
zero time average. In this case, we determine the dynamically relevant
parameters by using the perturbative propagator, that is derived from this
scheme, and we investigate the temperature effects on the molecular orientation
dynamics.Comment: 16 pages, 6 figure
Optimal use of time dependent probability density data to extract potential energy surfaces
A novel algorithm was recently presented to utilize emerging time dependent
probability density data to extract molecular potential energy surfaces. This
paper builds on the previous work and seeks to enhance the capabilities of the
extraction algorithm: An improved method of removing the generally ill-posed
nature of the inverse problem is introduced via an extended Tikhonov
regularization and methods for choosing the optimal regularization parameters
are discussed. Several ways to incorporate multiple data sets are investigated,
including the means to optimally combine data from many experiments exploring
different portions of the potential. Results are presented on the stability of
the inversion procedure, including the optimal combination scheme, under the
influence of data noise. The method is applied to the simulated inversion of a
double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package;
submitted to PhysRevA; several descriptions and explanations extended in Sec.
I
Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time
The classical theory of gravity predicts its own demise -- singularities. We
therefore attempt to quantize gravitation, and present here a new approach to
the quantization of gravity wherein the concept of time is derived by imposing
the constraints as expectation-value equations over the true dynamical degrees
of freedom of the gravitational field -- a representation of the underlying
anisotropy of space. This self-consistent approach leads to qualitatively
different predictions than the Dirac and the ADM quantizations, and in
addition, our theory avoids the interpretational conundrums associated with the
problem of time in quantum gravity. We briefly describe the structure of our
functional equations, and apply our quantization technique to two examples so
as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX
Characterizing Triviality of the Exponent Lattice of A Polynomial through Galois and Galois-Like Groups
The problem of computing \emph{the exponent lattice} which consists of all
the multiplicative relations between the roots of a univariate polynomial has
drawn much attention in the field of computer algebra. As is known, almost all
irreducible polynomials with integer coefficients have only trivial exponent
lattices. However, the algorithms in the literature have difficulty in proving
such triviality for a generic polynomial. In this paper, the relations between
the Galois group (respectively, \emph{the Galois-like groups}) and the
triviality of the exponent lattice of a polynomial are investigated. The
\bbbq\emph{-trivial} pairs, which are at the heart of the relations between
the Galois group and the triviality of the exponent lattice of a polynomial,
are characterized. An effective algorithm is developed to recognize these
pairs. Based on this, a new algorithm is designed to prove the triviality of
the exponent lattice of a generic irreducible polynomial, which considerably
improves a state-of-the-art algorithm of the same type when the polynomial
degree becomes larger. In addition, the concept of the Galois-like groups of a
polynomial is introduced. Some properties of the Galois-like groups are proved
and, more importantly, a sufficient and necessary condition is given for a
polynomial (which is not necessarily irreducible) to have trivial exponent
lattice.Comment: 19 pages,2 figure
Optically bound microscopic particles in one dimension
Counter-propagating light fields have the ability to create self-organized
one-dimensional optically bound arrays of microscopic particles, where the
light fields adapt to the particle locations and vice versa. We develop a
theoretical model to describe this situation and show good agreement with
recent experimental data (Phys. Rev. Lett. 89, 128301 (2002)) for two and three
particles, if the scattering force is assumed to dominate the axial trapping of
the particles. The extension of these ideas to two and three dimensional
optically bound states is also discussed.Comment: 12 pages, incl. 5 figures, accepted by Phys. Rev.
- …