197 research outputs found

    Innate Immunity Stimulates Permeability Barrier Homeostasis

    Get PDF
    A key function of the skin is to provide a permeability barrier to restrict the movement of water, electrolytes, and other small molecules between the outside environment and the internal milieu. Following disruption of the permeability barrier, there is a rapid restoration of barrier function, and one of the key signals initiating this repair response is a decrease in the concentration of calcium in the outer epidermis. In this issue, Borkowski et al. present evidence showing that activation of Toll receptor 3 by double-stranded RNA may be another pathway for activation of permeability barrier repair. These results provide further evidence for a link between innate immunity and the permeability barrier

    Efficacy of combined peroxisome proliferator-activated receptor-α ligand and glucocorticoid therapy in a murine model of atopic dermatitis.

    Get PDF
    Although topical glucocorticoids (GCs) show potent anti-inflammatory activity in inflamed skin, they can also exert numerous harmful effects on epidermal structure and function. In contrast, topical applications of ligands of peroxisome proliferator-activated receptor-α (PPARα) not only reduce inflammation but also improve cutaneous barrier homeostasis. Therefore, we examined whether sequential topical GCs followed by topical Wy14643 (a ligand of PPARα) might be more effective than either alone for atopic dermatitis (AD) in a hapten (oxazolone (Ox))-induced murine model with multiple features of AD (Ox-AD). Despite expected anti-inflammatory benefits, topical GC alone induced (i) epidermal thinning; (ii) reduced expression of involucrin, loricrin, and filaggrin; and (iii) allowed outside-to-inside penetration of an epicutaneous tracer. Although Wy14643 alone yielded significant therapeutic benefits in mice with mild or moderate Ox-AD, it was less effective in severe Ox-AD. Yet, topical application of Wy14643 after GC was not only significantly effective comparable with GC alone, but it also prevented GC-induced structural and functional abnormalities in permeability barrier homeostasis. Moreover, rebound flares were largely absent after sequential treatment with GC and Wy14643. Together, these results show that GC and PPARα ligand therapy together is not only effective but also prevents development of GC-induced side effects, including rebound flares, in murine AD

    Influence of Altered Serum Cholesterol Levels and Fasting on Cutaneous Cholesterol Synthesis

    Get PDF
    Barrier perturbation stimulates epidermal cholesterol synthesis, which plays an important role in restoring barrier function. In the present study, we examined whether changes in serum cholesterol levels or nutrition regulate epidermal cholesterol synthesis in hairless mice. Serum cholesterol levels were lowered by 50% after injection with 4- aminopyrazolo (3,4-d) pyrimidine and were increased by 51% by feeding an atherogenic diet. In contrast to most other tissues, cholesterol synthesis in the epidermis and dermis was not inhibited by elevations or stimulated by decreases in serum cholesterol levels. Additionally, feeding a high-cholesterol diet did not decrease epidermal or dermal cholesterol synthesis. However, fasting significantly decreased both epidermal (38%) and dermal (34%) cholesterologenesis. Furthermore, barrier recovery after acetone disruption of the barrier was impaired in fasted animals. However, treatment with topical lipids did not restore barrier repair rate to normal, indicating that factors in addition to lipids are necessary to overcome the effects of fasting. These results demonstrate that cholesterol synthesis in the epidermis and dermis is regulated independently of changes in serum cholesterol levels

    Effect of Essential Fatty Acid Deficiency on Cutaneous Sterol Synthesis

    Get PDF
    The fact that the skin is a major site of total body sterologensis, coupled both with the apparent absence of low density lipoprotein receptors on keratinocytes and with the lack of influence of serum cholesterol on epidermal sterologensis, has created the impression that epidermal lipid synthesis might be autonomous, i.e. nonregulatable. Recent studies have shown, however, that disruption of cutaneous barrier function with acetone or detergents stimulates epidermal sterologensis (J Lipid Res 26:418–427, 1985). To correlate further sterologenesis with barrier function, we measured de novo synthesis of cholesterol and total nonsaponifiable lipids in essential fatty acid-deficient (EFAD) hairless mice. Animals with defective barrier function, manifested by abnormal transepidermal water loss, demonstrated a 2-fold increase in epidermal cholesterol and total nonsaponifiable lipid synthesis over controls while synthesis in the dermis was unchanged. Epidermal sterologenesis in EFAd animals, repleted with linoleic acid either systematically or topically, returned toward normal as barrier function improved. Moreover, plastic occlusion of EFAD mouse skin normalized epidermal sterologensis at 1 and 3 days. These results provide further evidence that epidermal sterologenesis is not entirely autonomous, and can be regulated by water barrier requirements

    Permeability Barrier Disruption Coordinately Regulates mRNA Levels for Key Enzymes of Cholesterol, Fatty Acid, and Ceramide Synthesis in the Epidermis

    Get PDF
    The extracellular lipids of the stratum corneum, which are comprised mainly of cholesterol, fatty acids, and ceramides, are essential for epidermal permeability barrier function. Moreover, disruption of the permeability barrier results in an increased cholesterol, fatty acid, and ceramide synthesis in the underlying epidermis. This increase in lipid synthesis has been shown previously to be due to increased activities of HMG-CoA reductase, acetyl-CoA carboxylase, fatty acid synthase and serine palmitoyl transferase, key enzymes of cholesterol, fatty acid, and ceramide synthesis, respectively. In the present study, we determined whether the mRNA levels for the key enzymes required for synthesis of these three classes of lipids increase coordinately during barrier recovery. By northern blotting, the steady-state mRNA levels for HMG-CoA reductase, HMG-CoA synthase, farnesyl pyrophosphate synthase, and squalene synthase, key enzymes for cholesterol synthesis, all increased significantly after barrier disruption by either acetone or tape stripping. Additionally, the steady-state mRNA levels of acetyl-CoA carboxylase and fatty acid synthase, required for fatty acid synthesis, as well as serine palmitoyl transferase, the rate-limiting enzyme of de novo ceramide synthesis, also increased. Furthermore, artificial restoration of the permeability barrier by occlusion after barrier disruption prevented the increase in mRNA levels for all of these enzymes, except farnesyl pyrophosphate synthase, indicating a specific link of the increase in mRNA levels to barrier requirements. The parallel increase in epidermal mRNA levels for the enzymes required for cholesterol, fatty acid, and ceramide synthesis may be due to one or more transcription factors that regulate lipid requirements for permeability barrier function in keratinocytes

    The expression and regulation of enzymes mediating the biosynthesis of triglycerides and phospholipids in keratinocytes/epidermis

    Get PDF
    Triglycerides and phospholipids play an important role in epidermal permability barrier formation and function. They are synthesized de novo in the epidermis via the glycerol-3-phosphate pathway, catalyzed sequentially by a group of enzymes that have multiple isoforms including glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate acyltransferase (AGPAT), Lipin and diacylglycerol acyltransferase (DGAT). Here we review the current knowledge of GPAT, AGPAT, Lipin and DGAT enzymes in keratinocytes/epidermis focusing on the expression levels of the various isoforms and their localization in mouse epidermis. Additionally, the factors regulating their gene expression, including calcium induced differentiation, PPAR and LXR activators, and the effect of acute permeability barrier disruption will be discussed

    Generation of Free Fatty Acids from Phospholipids Regulates Stratum Corneum Acidification and Integrity

    Get PDF
    There is evidence that the “acid mantle” of the stratum corneum is important for both permeability barrier formation and cutaneous antimicrobial defense. The origin of the acidic pH of the stratum corneum remains conjectural, however. Both passive (e.g., eccrine/sebaceous secretions, proteolytic) and active (e.g., proton pumps) mechanisms have been proposed. We assessed here whether the free fatty acid pool, which is derived from phospholipase-mediated hydrolysis of phospholipids during cornification, contributes to stratum corneum acidification and function. Topical applications of two chemically unrelated secretory phospholipase sPLA2 inhibitors, bromphenacylbromide and 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol, for 3 d produced an increase in the pH of murine skin surface that was paralleled not only by a permeability barrier abnormality but also altered stratum corneum integrity (number of strippings required to break the barrier) and decreased stratum corneum cohesion (protein weight removed per stripping). Not only stratum corneum pH but also all of the functional abnormalities normalized when either palmitic, stearic, or linoleic acids were coapplied with the inhibitors. Moreover, exposure of intact murine stratum corneum to a neutral pH for as little as 3 h produced comparable abnormalities in stratum corneum integrity and cohesion, and further amplified the inhibitor-induced functional alterations. Furthermore, short-term applications of an acidic pH buffer to inhibitor-treated skin also reversed the abnormalities in stratum corneum integrity and cohesion, despite the ongoing decrease in free fatty acid levels. Finally, the secretory-phospholipase-inhibitor-induced alterations in integrity/cohesion were in accordance with premature dissolution of desmosomes, demonstrated both by electron microscopy and by reduced desmoglein 1 levels in the stratum corneum (shown by immunofluorescence staining and vizualized by confocal microscopy). Together, these results demonstrate: (i) the importance of phospholipid-to-free-fatty-acid processing for normal stratum corneum acidification; and (ii) the potentially important role of this pathway not only for barrier homeostasis but also for the dual functions of stratum corneum integrity and cohesion

    Decreased Epidermal Lipid Synthesis Accounts for Altered Barrier Function in Aged Mice

    Get PDF
    The epidermis of aged mice displays decreased stratum corneum (SC) lipid content and decreased extracellular bilayers, which result in impaired barrier recovery following the solvent treatment or tape stripping. We assessed the role of altered lipid synthesis as the cause of the abnormal barrier and lipid content in aged epidermis, both under basal conditions and in response to acute barrier perturbations. In aged epidermis (≥18months), synthesis of one of the three key lipid classes (cholesterol) is decreased under basal conditions, and sterologenesis fails to attain the levels reached in young epidermis following comparable acute perturbations. In contrast, fatty acid and sphingolipid synthesis in aged epidermis increase sufficiently to approach the levels attained in stimulated young epidermis. The abnormalities in sterologenesis in aged epidermis are paralleled by a decrease in activity of its rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, under basal conditions, and enzyme activity also fails to increase as much as in young epidermis after barrier disruption. That defective lipid generation contributes to the barrier defect is shown directly by the ability of either a cholesterol-containing mixture of SC lipids or cholesterol alone to enhance barrier recovery. Finally, lipid-induced acceleration of barrier recovery in aged epidermis correlates with repletion of the extracellular spaces with normal lamellar structures. Thus, a deficiency in lipid synthesis, particularly in cholesterologenesis, accounts for the barrier abnormality in aged epidermis
    • …
    corecore