215 research outputs found
REGULATION OF NITROGEN POLLUTION: TAXES VERSUS QUOTAS
This paper investigates the effects of first-best policies to regulate nitrogen application. Some nitrogen fertilizer is applied ex ante before a random rainfall, but sidedressed nitrogen may be applied ex post. First-best policy is a tax or a quota on ex ante application, because sidedressed nitrogen is not leached. Since a risk-averse farmer uses more nitrogen ex ante than a risk-neutral farmer, a higher tax must be imposed on the former. Action equivalent first-best taxes and quotas are also welfare equivalent. An empirical model for wheat in Israel was used to demonstrate the analytical findings.Environmental Economics and Policy,
Regulation of Nitrogen Pollution: Taxes versus Quotas
This paper investigates the effects of first-best policies to regulate nitrogen application. Some nitrogen fertilizer is applied ex ante before a random rainfall, but side dressed nitrogen may be applied ex post. First-best policy is a tax or a quota on ex ante application, because side dressed nitrogen is not leached. Since a risk-averse farmer uses more nitrogen ex ante than a risk-neutral farmer, a higher tax must be imposed on the former. Action equivalent first-best taxes and quotas are also welfare equivalent. An empirical model for wheat in Israel was used to demonstrate the analytica
Risk and Probability Premiums for CARA Utility Functions
The risk premium and the probability premium are used to determine appropriate coefficients of absolute risk aversion under CARA utility. A defensible range of risk-aversion coefficients is defined by the coefficients that correspond to risk premiums falling between 1 and 99% of the amount at risk or to probability premiums falling between .005 and ,49 for a lottery that pays or loses a given sum. The consequences of ignoring risk premiums when selecting risk-aversion coefficients for representative decision makers are illustrated by calculation of the implied risk premium associated with the levels of absolute risk aversion assumed in six selected studies
Fast Two-Robot Disk Evacuation with Wireless Communication
In the fast evacuation problem, we study the path planning problem for two
robots who want to minimize the worst-case evacuation time on the unit disk.
The robots are initially placed at the center of the disk. In order to
evacuate, they need to reach an unknown point, the exit, on the boundary of the
disk. Once one of the robots finds the exit, it will instantaneously notify the
other agent, who will make a beeline to it.
The problem has been studied for robots with the same speed~\cite{s1}. We
study a more general case where one robot has speed and the other has speed
. We provide optimal evacuation strategies in the case that by showing matching upper and lower bounds on the
worst-case evacuation time. For , we show (non-matching)
upper and lower bounds on the evacuation time with a ratio less than .
Moreover, we demonstrate that a generalization of the two-robot search strategy
from~\cite{s1} is outperformed by our proposed strategies for any .Comment: 18 pages, 10 figure
A sub-cm micromachined electron microscope
A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance
Evacuating Two Robots from a Disk: A Second Cut
We present an improved algorithm for the problem of evacuating two robots
from the unit disk via an unknown exit on the boundary. Robots start at the
center of the disk, move at unit speed, and can only communicate locally. Our
algorithm improves previous results by Brandt et al. [CIAC'17] by introducing a
second detour through the interior of the disk. This allows for an improved
evacuation time of . The best known lower bound of was shown by
Czyzowicz et al. [CIAC'15].Comment: 19 pages, 5 figures. This is the full version of the paper with the
same title accepted in the 26th International Colloquium on Structural
Information and Communication Complexity (SIROCCO'19
Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults
A set of mobile robots is placed at points of an infinite line. The robots
are equipped with GPS devices and they may communicate their positions on the
line to a central authority. The collection contains an unknown subset of
"spies", i.e., byzantine robots, which are indistinguishable from the
non-faulty ones. The set of the non-faulty robots need to rendezvous in the
shortest possible time in order to perform some task, while the byzantine
robots may try to delay their rendezvous for as long as possible. The problem
facing a central authority is to determine trajectories for all robots so as to
minimize the time until the non-faulty robots have rendezvoused. The
trajectories must be determined without knowledge of which robots are faulty.
Our goal is to minimize the competitive ratio between the time required to
achieve the first rendezvous of the non-faulty robots and the time required for
such a rendezvous to occur under the assumption that the faulty robots are
known at the start. We provide a bounded competitive ratio algorithm, where the
central authority is informed only of the set of initial robot positions,
without knowing which ones or how many of them are faulty. When an upper bound
on the number of byzantine robots is known to the central authority, we provide
algorithms with better competitive ratios. In some instances we are able to
show these algorithms are optimal
Density-dependence of functional development in spiking cortical networks grown in vitro
During development, the mammalian brain differentiates into specialized
regions with distinct functional abilities. While many factors contribute to
functional specialization, we explore the effect of neuronal density on the
development of neuronal interactions in vitro. Two types of cortical networks,
dense and sparse, with 50,000 and 12,000 total cells respectively, are studied.
Activation graphs that represent pairwise neuronal interactions are constructed
using a competitive first response model. These graphs reveal that, during
development in vitro, dense networks form activation connections earlier than
sparse networks. Link entropy analysis of dense net- work activation graphs
suggests that the majority of connections between electrodes are reciprocal in
nature. Information theoretic measures reveal that early functional information
interactions (among 3 cells) are synergetic in both dense and sparse networks.
However, during later stages of development, previously synergetic
relationships become primarily redundant in dense, but not in sparse networks.
Large link entropy values in the activation graph are related to the domination
of redundant ensembles in late stages of development in dense networks. Results
demonstrate differences between dense and sparse networks in terms of
informational groups, pairwise relationships, and activation graphs. These
differences suggest that variations in cell density may result in different
functional specialization of nervous system tissue in vivo.Comment: 10 pages, 7 figure
Network Analysis of Biochemical Logic for Noise Reduction and Stability: A System of Three Coupled Enzymatic AND Gates
We develop an approach aimed at optimizing the parameters of a network of
biochemical logic gates for reduction of the "analog" noise buildup.
Experiments for three coupled enzymatic AND gates are reported, illustrating
our procedure. Specifically, starch - one of the controlled network inputs - is
converted to maltose by beta-amylase. With the use of phosphate (another
controlled input), maltose phosphorylase then produces glucose. Finally,
nicotinamide adenine dinucleotide (NAD+) - the third controlled input - is
reduced under the action of glucose dehydrogenase to yield the optically
detected signal. Network functioning is analyzed by varying selective inputs
and fitting standardized few-parameters "response-surface" functions assumed
for each gate. This allows a certain probe of the individual gate quality, but
primarily yields information on the relative contribution of the gates to noise
amplification. The derived information is then used to modify our experimental
system to put it in a regime of a less noisy operation.Comment: 31 pages, PD
Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response
The sensitivity of T cells to interleukin-2 (IL-2) can vary by three orders of magnitude and is determined by the surface densities of the IL-2 receptor α subunits.Regulatory T cells inflict a double hit on effector T cells by lowering the bulk IL-2 concentration as well as the sensitivity of effector T cells to this crucial cytokine.This double hit deprives weakly activated effector T cells of pSTAT5 survival signals while having only minimal effects on strongly activated effector cells that express increased levels of the IL-2 receptor.Short-term signaling differences lead to a differential functional in terms of proliferation and cell division: regulatory T cell specifically suppress weakly activated effector T cells even at large numbers; small numbers of strongly activated effector T cells overcome the suppression
- …