379 research outputs found

    Spin and orbital excitation spectrum in the Kugel-Khomskii model

    Full text link
    We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimensions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional Neel spin order accompanied by the uniform d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B. Rapid Communicatio

    Spin-wave softening and Hund's coupling in ferromagnetic manganites

    Full text link
    Using one-orbital model of hole-doped manganites, we show with the help of Holstein-Primakov transformation that finite Hund's coupling is responsible for the spin-wave softening in the ferromagnetic BB-phase manganites. We obtain an analytical result for the spin-wave spectrum for \JH\gg t. In the limit of infinte Hund's coupling, the spectrum is the conventional nearest-neighbor Heisenberg ferromagnetic spin-wave. The o(t/\JH)-order correction is negative and thus accounts for the softening near the zone boundary.Comment: 5 pages, 3 figure

    Non-perturbative corrections to mean-field behavior: spherical model on spider-web graph

    Full text link
    We consider the spherical model on a spider-web graph. This graph is effectively infinite-dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determine all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of δ\delta-functions, and all the modes are localized. The fractional number of modes with frequency less than ω\omega varies as exp(C/ω)\exp (-C/\omega) for ω\omega tending to zero, where CC is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time tt varies as exp(Ct1/3)\exp(- C' t^{1/3}), for large tt, where CC' is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free-energy per site at temperature TT, near and above the critical temperature TcT_c, also has an essential singularity of the type exp[K(TTc)1/2]\exp[ -K {(T - T_c)}^{-1/2}].Comment: substantially revised, a section adde

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Multicomponent intervention for patients admitted to an emergency unit for suicide attempt: an exploratory study

    Get PDF
    Suicide is a major cause of premature deaths worldwide and belongs to the top priority public health issues. While suicide attempt is the most important risk factor for completed suicide, intervention for suicide attempters (SA) have produced mixed results. Since an important proportion of SA request medical care, emergency units (EU) are an opportune setting to implement such interventions. This exploratory study evaluated the feasibility and acceptability of a multicomponent intervention for SA admitted to an EU. The intervention consisted of coordination by a case manager of a joint crisis plan (JCP), an early meeting with relatives and the existing care network, as well as phone contacts during 3 months after suicide attempt. Among 107 SA admitted to the emergency unit during the study period, 51 could not be included for logistical reason, 22 were excluded, and intervention was offered to 34. Of these, 15 refused the intervention, which was thus piloted with 19 SA. First-time attempters most frequently declined the intervention. Feasibility and acceptability of phone contacts and case manager were good, while JCPs and meetings were difficult to implement and perceived as less acceptable. Refusal pattern questions the global acceptability and is discussed: JCPs and meetings will have to be modified in order to improve their feasibility and acceptability, especially among first-time attempters

    Orbital dynamics in ferromagnetic transition metal oxides

    Full text link
    We consider a model of strongly correlated ege_g electrons interacting by superexchange orbital interactions in the ferromagnetic phase of LaMnO3_3. It is found that the classical orbital order with alternating occupied ege_g orbitals has a full rotational symmetry at orbital degeneracy, and the excitation spectrum derived using the linear spin-wave theory is gapless. The quantum (fluctuation) corrections to the order parameter and to the ground state energy restore the cubic symmetry of the model. By applying a uniaxial pressure orbital degeneracy is lifted in a tetragonal field and one finds an orbital-flop phase with a gap in the excitation spectrum. In two dimensions the classical order is more robust near the orbital degeneracy point and quantum effects are suppressed. The orbital excitation spectra obtained using finite temperature diagonalization of two-dimensional clusters consist of a quasiparticle accompanied by satellite structures. The orbital waves found within the linear spin-wave theory provide an excellent description of the dominant pole of these spectra.Comment: 13 pages, 12 figures, to appear in Phys. Rev.

    Theory of Raman Scattering from Orbital Excitations in Manganese Oxides

    Get PDF
    We present a theory of the Raman scattering from the orbital wave excitations in manganese oxides. Two excitation processes of the Raman scattering are proposed. The Raman scattering cross section is formulated by using the pseudospin operator for orbital degree of freedom in a Mn ion. The Raman spectra from the orbital wave excitations are calculated and their implications in the recent experimental results reported in LaMnO3_3 are discussed.Comment: 10 pages, 7 figure

    Orbital liquid in three dimensional Mott insulator: LaTiO3LaTiO_3

    Full text link
    We present a theory of spin and orbital states in Mott insulator LaTiO3LaTiO_3. The spin-orbital superexchange interaction between d1(t2g)d^1(t_{2g}) ions in cubic crystal suffers from a pathological degeneracy of orbital states at classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t2gt_{2g} level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3LaTiO_3.Comment: 5 pages, 3 figure

    Exact Ground States in Spin Systems with Orbital Degeneracy

    Full text link
    We present exact ground states in spin models with orbital generacy in one and higher dimensions. A method to obtain the exact ground states of the models when the Hamiltonians are composed of the products of two commutable operators is proposed. For the case of the spin-1/2 model with two-fold degeneracy some exact ground states are given, such as the Valence-Bond (VB), the magnetically ordered, and the orbitally ordered states under particular parameter regimes. We also find the models with the higher spin and degeneracy which have the new types of VB ground states in the spin and the orbital sectors.Comment: 4 pages(JPSJ.sty), 2 figures(EPS), to appear in J. Phys. Soc. Jpn. 68, No.2 (1999) 32

    Orbital and spin physics in LiNiO2 and NaNiO2

    Full text link
    We derive a spin-orbital Hamiltonian for a triangular lattice of e_g orbital degenerate (Ni^{3+}) transition metal ions interacting via 90 degree superexchange involving (O^{2-}) anions, taking into account the on-site Coulomb interactions on both the anions and the transition metal ions. The derived interactions in the spin-orbital model are strongly frustrated, with the strongest orbital interactions selecting different orbitals for pairs of Ni ions along the three different lattice directions. In the orbital ordered phase, favoured in mean field theory, the spin-orbital interaction can play an important role by breaking the U(1) symmetry generated by the much stronger orbital interaction and restoring the threefold symmetry of the lattice. As a result the effective magnetic exchange is non-uniform and includes both ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic interactions still dominate, this offers yet insufficient explanation for the absence of magnetic order and the low-temperature behaviour of the magnetic susceptibility of stoichiometric LiNiO_2. The scenario proposed to explain the observed difference in the physical properties of LiNiO_2 and NaNiO_2 includes small covalency of Ni-O-Li-O-Ni bonds inducing weaker interplane superexchange in LiNiO_2, insufficient to stabilize orbital long-range order in the presence of stronger intraplane competition between superexchange and Jahn-Teller coupling.Comment: 33 pages, 12 postscript figures, uses iopams.sty . This article features in New Journal of Physics as part of a Focus Issue on Orbital Physics - all contributions may be freely accessed at (http://stacks.iop.org/1367-2630/6/i=1/a=E05). The published version of this article may be found at http://stacks.iop.org/1367-2630/7/12
    corecore