40 research outputs found

    Michellamines A6 and A7, and further mono- and dimeric naphthylisoquinoline alkaloids from a Congolese Ancistrocladus liana and their antiausterity activities against pancreatic cancer cells

    Get PDF
    Michellamines A6 (1) and A7 (2) are the first dimers of 5,8′-coupled naphthylisoquinoline alkaloids with cis-configured stereocenters in both tetrahydroisoquinoline subunits. They were isolated from the leaves of a recently discovered, yet unidentified Congolese Ancistrocladus liana that shares some morphological characteristics with Ancistrocladus likoko. Two further new dimeric analogs, michellamines B4 (3) and B5 (4), were obtained, along with two previously likewise unknown monomers, ancistrobonsolines A1 (5) and A2 (6), which, besides one single known other example, are the only naphthyldihydroisoquinolines with an M-configured biaryl axis and R-configuration at C-3. Moreover, five compounds earlier reported from other Ancistrocladus species were identified, ancistroealaine C (7), korupensamines A (8a) and B (8b), and michellamines A2 (9) and E (10). Their complete structural elucidation succeeded due to the fruitful interplay of spectroscopic, chemical, and chiroptical methods. Chemotaxonomically, the stereostructures of the metabolites clearly delineate this Congolese Ancistrocladus liana from all known related species, showing that it might be a new taxon. Ancistrobonsolines A1 (5) and A2 (6) exhibited strong preferential cytotoxicities against human PANC-1 pancreatic cancer cells under nutrient-deprived conditions, without displaying toxicity in normal, nutrient-rich medium. Against cervical HeLa cancer cells, the dimeric alkaloids michellamines A6 (1) and E (10) displayed the highest cytotoxic activities, comparable to that of the standard agent, 5-fluorouracil. Furthermore, ancistrobonsolines A1 (5) and A2 (6) showed weak-to-moderate antiprotozoal activities

    Antiprotozoal dimeric naphthylisoquinolines, mbandakamines B3 and B4, and related 5,80'-coupled monomeric alkaloids, ikelacongolines A-D, from a Congolese Ancistrocladus liana

    Get PDF
    From the leaves of a botanically and phytochemically as yet unexplored Ancistrocladus liana discovered in the rainforests of the Central region of the Democratic Republic of the Congo in the vicinity of the town of Ikela, six new naphthylisoquinoline alkaloids were isolated, viz., two constitutionally unsymmetric dimers, the mbandakamines B3 (3) and B4 (4), and four related 5,8′-linked monomeric alkaloids, named ikelacongolines A–D (5a, 5b, 6, and 7). The dimers 3 and 4 are structurally unusual quateraryls comprising two 5,8′-coupled monomers linked via a sterically strongly constrained 6′,1′′-connection between their naphthalene units. These compounds contain seven elements of chirality, four stereogenic centers and three consecutive chiral axes. They were identified along with two known related compounds, the mbandakamines A (1) and B2 (2), which had so far only been detected in two Ancistrocladus species indigenous to the Northwestern Congo Basin. In addition, five known monomeric alkaloids, previously found in related Central African Ancistrocladus species, were isolated from the here investigated Congolese liana, three of them belonging to the subclass of 5,8′-coupled naphthylisoquinoline alkaloids, whereas two compounds exhibited a less frequently occurring 7,8′-biaryl linkage. The stereostructures of the new alkaloids were established by spectroscopic (in particular HRESIMS, 1D and 2D NMR), chemical (oxidative degradation), and chiroptical (electronic circular dichroism) methods. The mbandakamines B3 (3) and B4 (4) displayed pronounced activities in vitro against the malaria parasite Plasmodium falciparum and the pathogen of African sleeping sickness, Trypanosoma brucei rhodesiense

    Spirombandakamine A3 and cyclombandakamines A8 and A9, polycyclic naphthylisoquinoline dimers, with antiprotozoal activity, from a Congolese Ancistrocladus plant

    No full text
    Spirombandakamine A3 (7) is only the third known naphthylisoquinoline dimer with a spiro-fused novel molecular framework and the first such representative to possess a relative trans-configuration at the two chiral centers in both tetrahydroisoquinoline subunits. It was found in the leaves of a botanically as yet unidentified Congolese Ancistrocladus plant, which is morphologically closely related to the Central African taxon Ancistrocladus ealaensis. Likewise isolated were the new cyclombandakamines A8 (8) and A9 (9), which belong to another most recently discovered type of unusual oxygen-bridged naphthylisoquinoline dimers and two previously described "open-chain" analogues, mbandakamines C (10) and D (11). The full absolute stereostructures of these compounds were assigned by combining spectroscopic, chemical, and chiroptical methods. Preliminary biomimetic investigations indicated that both spirombandakamine- and cyclombandakamine-type dimers result from the oxidation of their open-chain mbandakamine-type congeners. The new dimeric alkaloids 7-9 displayed potent growth-inhibitory activity against Plasmodium falciparum, the protozoal pathogen causing malaria, and moderate effects on Trypanosoma brucei rhodesiense, the parasite responsible for African sleeping sickness

    Fusion moves for graph matching

    No full text
    We contribute to approximate algorithms for the quadratic assignment problem also known as graph matching. Inspired by the success of the fusion moves technique developed for multilabel discrete Markov random fields, we investigate its applicability to graph matching. In particular, we show how fusion moves can be efficiently combined with the dedicated state-of-the-art dual methods that have recently shown superior results in computer vision and bioimaging applications. As our empirical evaluation on a wide variety of graph matching datasets suggests, fusion moves significantly improve performance of these methods in terms of speed and quality of the obtained solutions. Our method sets a new state-of-the-art with a notable margin with respect to its competitors

    The development and evaluation of a computer-based program to test and to teach the recognition of facial affect

    No full text
    Autism is a chronic pervasive neurodevelopmental disorder characterized by the early onset of social and communicative impairments as well as restricted, ritualized, stereotypic behavior. The endophenotype of autism includes neuropsychological deficits, for instance a lack of "Theory of Mind" and problems recognizing facial affect. In this study, we report the development and evaluation of a computer-based program to teach and test the ability to identify basic facially expressed emotions. 10 adolescent or adult subjects with high-functioning autism or Asperger-syndrome were included in the investigation. A priori the facial affect recognition test had shown good psychometric properties in a normative sample (internal consistency: rtt=.91-.95; retest reliability: rtt=.89-.92). In a prepost design, one half of the sample was randomly assigned to receive computer treatment while the other half of the sample served as control group. The training was conducted for five weeks, consisting of two hours training a week. The trained individuals improved significantly on the affect recognition task, but not on any other measure. Results support the usefulness of the program to teach the detection of facial affect. However, the improvement found is limited to a circumscribed area of social-communicative function and generalization is not ensured

    5′-O-Methyldioncophylline D, a 7,8′-coupled naphthylisoquinoline alkaloid from callus cultures of Triphyophyllum peltatum, and its biosynthesis from a late-stage tetrahydroisoquinoline precursor

    No full text
    The natural tetrahydroisoquinoline phylline (4) was synthesized in a specifically [1,1′-13C2]-labeled form, and fed to callus cultures of Triphyophyllum peltatum. Its incorporation into naphthylisoquinoline alkaloids, among them habropetaline A (8) (as evidenced by1H,13C NMR, and 2D INADEQUATE experiments), proved 4 to be the authentic coupling substrate for the enzyme-mediated phenol-oxidative coupling with a naphthalene portion. During the feeding experiments, a new alkaloid was discovered, 5′-O-methyldioncophylline D (5). It is the first 7,8′-linked (d-type) naphthylisoquinoline isolated from a Dioncophyllaceae plant. The new alkaloid consists of two closely eluting, slowly interconverting atropo-diastereomers, (P)-5 and (M)-5. Their full absolute stereostructures were assigned, i.e., by spectroscopic and online HPLC-CD investigations

    Epoxides related to dioncoquinone B: Synthesis, activity against multiple myeloma cells, and search for the target protein

    No full text
    Epoxide 2b is an analog of the synthetic intermediate 2a en route to the polyketide-derived antitumoral naphthoquinone dioncoquinone B (1), isolated from cell cultures of the tropical liana Triphyophyllum peltatum (Dioncophyllaceae). Compound 2b was found to induce strong apoptosis in multiple myeloma cells at a concentration (EC50 = 3.5 μM), distinctly lower than that of 1 and any related analog, without exerting significant toxicity against normal blood cells. Preliminary studies showed that 2b follows different SAR rules as compared to the naphthoquinones. Among the series of synthesized epoxides, 2b was the most active one and was thus, after biotinylation, subjected to mass spectrometry-based affinity capture experiments aiming at the identification of target proteins. The MS data revealed 2b to address proteins that are associated with stress regulation processes which are critical for multiple myeloma cell survival
    corecore