4,111 research outputs found

    A meson-baryon molecular interpretation for some Ωc\Omega_c excited baryons

    Full text link
    We explore the possibility that some of the five narrow Ωc\Omega_c resonances recently observed at LHCb could correspond to pentaquark states, structured as meson-baryon bound states or molecules. The interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm +1+1, strangeness −2-2 and isospin 0 sector is built from t-channel vector meson exchange, using effective Lagrangians. The resulting s-wave coupled-channel unitarized amplitudes show the presence of two structures with similar masses and widths to those of the observed Ωc(3050)0\Omega_c(3050)^0 and Ωc(3090)0\Omega_c(3090)^0. The identification of these resonances with the meson-baryon bound states found in this work would also imply assigning the values 1/2−1/2^- for their spin-parity. An experimental determination of the spin-parity of the Ωc(3090)0\Omega_c(3090)^0 would help in disentangling its structure, as the quark-based models predict its spin-parity to be either 3/2−3/2^- or 5/2−5/2^-.Comment: 9 pages, 4 figure

    Short channel effects in graphene-based field effect transistors targeting radio-frequency applications

    Get PDF
    Channel length scaling in graphene field effect transistors (GFETs) is key in the pursuit of higher performance in radio frequency electronics for both rigid and flexible substrates. Although two-dimensional (2D) materials provide a superior immunity to Short Channel Effects (SCEs) than bulk materials, they could dominate in scaled GFETs. In this work, we have developed a model that calculates electron and hole transport along the graphene channel in a drift-diffusion basis, while considering the 2D electrostatics. Our model obtains the self-consistent solution of the 2D Poisson's equation coupled to the current continuity equation, the latter embedding an appropriate model for drift velocity saturation. We have studied the role played by the electrostatics and the velocity saturation in GFETs with short channel lengths L. Severe scaling results in a high degradation of GFET output conductance. The extrinsic cutoff frequency follows a 1/L^n scaling trend, where the index n fulfills n < 2. The case n = 2 corresponds to long-channel GFETs with low source/drain series resistance, that is, devices where the channel resistance is controlling the drain current. For high series resistance, n decreases down to n= 1, and it degrades to values of n < 1 because of the SCEs, especially at high drain bias. The model predicts high maximum oscillation frequencies above 1 THz for channel lengths below 100 nm, but, in order to obtain these frequencies, it is very important to minimize the gate series resistance. The model shows very good agreement with experimental current voltage curves obtained from short channel GFETs and also reproduces negative differential resistance, which is due to a reduction of diffusion current.Comment: 27-pages manuscript (10 figures) plus 6 pages of supplementary information. European Union Action H2020 (696656) / Department d'Universitats, Recerca i Societat de la Informaci\'o of the Generalitat de Catalunya (2014 SGR 384) / Ministerio de Econom\'ia y Competitividad of Spain (TEC2012-31330 and TEC2015-67462-C2-1-R) / MINECO FEDE
    • …
    corecore