111 research outputs found

    Stabilizing role of platelet P2Y(12) receptors in shear-dependent thrombus formation on ruptured plaques

    Get PDF
    Background: In most models of experimental thrombosis, healthy blood vessels are damaged. This results in the formation of a platelet thrombus that is stabilized by ADP signaling via P2Y(12) receptors. However, such models do not predict involvement of P2Y(12) in the clinically relevant situation of thrombosis upon rupture of atherosclerotic plaques. We investigated the role of P2Y(12) in thrombus formation on (collagen-containing) atherosclerotic plaques in vitro and in vivo, by using a novel mouse model of atherothrombosis. Methodology: Plaques in the carotid arteries from Apoe(-/-) mice were acutely ruptured by ultrasound treatment, and the thrombotic process was monitored via intravital fluorescence microscopy. Thrombus formation in vitro was assessed in mouse and human blood perfused over collagen or plaque material under variable conditions of shear rate and coagulation. Effects of two reversible P2Y(12) blockers, ticagrelor (AZD6140) and cangrelor (AR-C69931MX), were investigated. Principal Findings: Acute plaque rupture by ultrasound treatment provoked rapid formation of non-occlusive thrombi, which were smaller in size and unstable in the presence of P2Y(12) blockers. In vitro, when mouse or human blood was perfused over collagen or atherosclerotic plaque material, blockage or deficiency of P2Y(12) reduced the thrombi and increased embolization events. These P2Y(12) effects were present at shear rates >500 s(-1), and they persisted in the presence of coagulation. P2Y(12)-dependent thrombus stabilization was accompanied by increased fibrin(ogen) binding. Conclusions/Significance: Platelet P2Y(12) receptors play a crucial role in the stabilization of thrombi formed on atherosclerotic plaques. This P2Y(12) function is restricted to high shear flow conditions, and is preserved in the presence of coagulation

    Variable hypocoagulant effect of fish oil intake in humans: modulation of fibrinogen level and thrombin generation

    Get PDF
    Objective-The beneficial effect of dietary fish oil, rich in omega-3 polyunsaturated fatty acids (PUFAs), on cardiovascular disease is multifactorial and may partly rely on their anticoagulant action. We studied how fish oil intake influenced thrombin generation in plasma and which factors were involved herein. Methods and Results-Twenty-five healthy males with borderline overweight received 3.0 g omega-3 PUFAs daily for 4 weeks. Fish oil intake reduced plasma triglycerides and lowered platelet integrin activation, as well as plasma levels of fibrinogen and factor V, but had no effect on vitamin K-dependent coagulation factors. Before fish oil intake, thrombin generation (reflecting the coagulant potential) considerably varied between plasmas from individual subjects, which were partly explained by variation in prothrombin, antithrombin, fibrinogen, and factor V levels. Fish oil intake reduced thrombin generation in the presence and absence of platelets. This reduction correlated with the fish oil effect on fibrinogen and factor V levels. Interestingly, the lowering effect of fish oil on thrombin generation and fibrinogen clustered around subjects with high fibrinogen carrying a structural fibrinogen α-chain polymorphism. Conclusions-Dietary omega-3 PUFAs provoke a hypocoagulant, vitamin K-independent effect in humans, the degree of which may depend on fibrinogen level. Chemicals / CAS: antithrombin, 9000-94-6; blood clotting factor 5, 9001-24-5, 9013-23-4; cholesterol, 57-88-5; fibrinogen, 9001-32-5; fish oil, 8016-13-5; protein C, 60202-16-6; prothrombin, 9001-26-7; thrombin, 9002-04-4; vitamin K group, 12001-79-5; Cholesterol, LDL; Factor V, 9001-24-5; Fatty Acids, Omega-3; Fibrinogen, 9001-32-5; Fish Oils; Peptide Fragments; Thrombin, 3.4.21.5; Triglycerides; thrombin receptor peptide (42-47

    Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local Collagenolytic Activity

    Get PDF
    Objective Platelets are increasingly implicated in processes beyond hemostasis and thrombosis, such as vascular remodeling. Members of the matrix metalloproteinase (MMP) family not only remodel the extracellular matrix but also modulate platelet function. Here, we made a systematic comparison of the roles of MMP family members in acute thrombus formation under flow conditions and assessed platelet-dependent collagenolytic activity over time. Approach and Results Pharmacological inhibition of MMP-1 or MMP-2 (human) or deficiency in MMP-2 (mouse) suppressed collagen-dependent platelet activation and thrombus formation under flow, whereas MMP-9 inhibition/deficiency stimulated these processes. The absence of MMP-3 was without effect. Interestingly, MMP-14 inhibition led to the formation of larger thrombi, which occurred independently of its capacity to activate MMP-2. Platelet thrombi exerted local collagenolytic activity capable of cleaving immobilized dye-quenched collagen and fibrillar collagen fibers within hours, with loss of the majority of the platelet adhesive properties of collagen as a consequence. This collagenolytic activity was redundantly mediated by platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 but occurred independently of platelet -granule release (Nbeal2(-/-) mice). The latter was in line with subcellular localization experiments, which indicated a granular distribution of MMP-1 and MMP-2 in platelets, distinct from -granules. Whereas MMP-9 protein could not be detected inside platelets, activated platelets did bind plasma-derived MMP-9 to their plasma membrane. Overall, platelet MMP activity was predominantly membrane-associated and influenced by platelet activation status. Conclusions Platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 differentially modulate acute thrombus formation and at later time points limit thrombus formation by exerting collagenolytic activity

    The Spatiotemporal Regulation of cAMP Signaling in Blood Platelets—Old Friends and New Players

    Get PDF
    Atherothrombosis, the pathology underlying numerous cardiovascular diseases, is a major cause of death globally. Hyperactive blood platelets play a key role in the atherothrombotic process through the release of inflammatory mediators and formation of thrombi. In healthy blood vessels, excessive platelet activation is restricted by endothelial-derived prostacyclin (PGI2) through cyclic adenosine-5′-monophosphate (cAMP) and protein kinase A (PKA)-dependent mechanisms. Elevation in intracellular cAMP is associated with the control of a number of distinct platelet functions including actin polymerisation, granule secretion, calcium mobilization and integrin activation. Unfortunately, in atherosclerotic disease the protective effects of cAMP are compromised, which may contribute to pathological thrombosis. The cAMP signaling network in platelets is highly complex with the presence of multiple isoforms of adenylyl cyclase (AC), PKA, and phosphodiesterases (PDEs). However, a precise understanding of the relationship between specific AC, PKA, and PDE isoforms, and how individual signaling substrates are targeted to control distinct platelet functions is still lacking. In other cells types, compartmentalisation of cAMP signaling has emerged as a key mechanism to allow precise control of specific cell functions. A-kinase anchoring proteins (AKAPs) play an important role in this spatiotemporal regulation of cAMP signaling networks. Evidence of AKAP-mediated compartmentalisation of cAMP signaling in blood platelets has begun to emerge and is providing new insights into the regulation of platelet function. Dissecting the mechanisms that allow cAMP to control excessive platelet activity without preventing effective haemostasis may unleash the possibility of therapeutic targeting of the pathway to control unwanted platelet activity

    Acid Sphingomyelinase Regulates Platelet Cell Membrane Scrambling, Secretion, and Thrombus Formation

    Get PDF
    Objective-Platelet activation is essential for primary hemostasis and acute thrombotic vascular occlusions. On activation, platelets release their prothrombotic granules and expose phosphatidylserine, thus fostering thrombin generation and thrombus formation. In other cell types, both degranulation and phosphatidylserine exposure are modified by sphingomyelinase-dependent formation of ceramide. The present study thus explored whether acid sphingomyelinase participates in the regulation of platelet secretion, phosphatidylserine exposure, and thrombus formation. Approach and Results-Collagen-related peptide-induced or thrombin-induced ATP release and P-selectin exposure were significantly blunted in platelets from Asm-deficient mice (Smpd1(-/-)) when compared with platelets from wild-type mice (Smpd1(+/+)). Moreover, phosphatidylserine exposure and thrombin generation were significantly less pronounced in Smpd1(-/-) platelets than in Smpd1(+/+) platelets. In contrast, platelet integrin alpha(IIb)beta(3) activation and aggregation, as well as activation-dependent Ca2+ flux, were not significantly different between Smpd1(-/-) and Smpd1(+/+) platelets. In vitro thrombus formation at shear rates of 1700 s(-1) and in vivo thrombus formation after FeCl3 injury were significantly blunted in Smpd1(-/-) mice while bleeding time was unaffected. Asm-deficient platelets showed significantly reduced activation-dependent ceramide formation, whereas exogenous ceramide rescued diminished platelet secretion and thrombus formation caused by Asm deficiency. Treatment of Smpd1(+/+) platelets with bacterial sphingomyelinase (0.01 U/mL) increased, whereas treatment with functional acid sphingomyelinase-inhibitors, amitriptyline or fluoxetine (5 mu mol/L), blunted activation-dependent platelet degranulation, phosphatidylserine exposure, and thrombus formation. Impaired degranulation and thrombus formation of Smpd1(-/-) platelets were again overcome by exogenous bacterial sphingomyelinase. Conclusions-Acid sphingomyelinase is a completely novel element in the regulation of platelet plasma membrane properties, secretion, and thrombus formation

    A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding.

    Get PDF
    Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes

    Microparticles from apoptotic platelets promote resident macrophage differentiation

    Get PDF
    Platelets shed microparticles not only upon activation, but also upon ageing by an apoptosis-like process (apoptosis-induced platelet microparticles, PMap). While the activation-induced microparticles have widely been studied, not much is known about the (patho)physiological consequences of PMap formation. Flow cytometry and scanning electron microscopy demonstrated that PMap display activated integrins and interact to form microparticle aggregates. PMap were chemotactic for monocytic cells, bound to these cells, an furthermore stimulated cell adhesion and spreading on a fibronectin surface. After prolonged incubation, PMap promoted cell differentiation, but inhibited proliferation. Monocyte membrane receptor analysis revealed increased expression levels of CD11b (integrin αMβ2), CD14 and CD31 (platelet endothelial cell adhesion molecule-1), and the chemokine receptors CCR5 and CXCR4, but not of CCR2. This indicated that PMap polarized the cells into resident M2 monocytes. Cells treated with PMap actively consumed oxidized low-density lipoprotein (oxLDL), and released matrix metalloproteinases and hydrogen peroxide. Further confirmation for the differentiation towards resident professional phagocytes came from the finding that PMap stimulated the expression of the (ox)LDL receptors, CD36 and CD68, and the production of proinflammatory and immunomodulating cytokines by monocytes. In conclusion, interaction of PMap with monocytic cells has an immunomodulating potential. The apoptotic microparticles polarize the cells into a resident M2 subset, and induce differentiation to resident professional phagocytes
    • …
    corecore