190 research outputs found

    Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

    Full text link
    We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.Comment: 4 pages, 5 fig

    Functional screening in Drosophila reveals the conserved role of REEP1 in promoting stress resistance and preventing the formation of Tau aggregates

    Get PDF
    Pathological modifications in the microtubule-associated protein Tau is a common characteristic observed in different neurological diseases, suggesting that analogous metabolic pathways might be similarly affected during neurodegeneration. To identify these molecules and mechanisms, we utilized Drosophila models of human Tau-mediated neurodegeneration to perform an RNA interference functional screening against genes considered to be implicated in the pathogenesis of different neurodegenerative disorders. We found that the downregulation of the Drosophila REEP1 homolog protein enhanced Tau toxicity with increased formation of insoluble aggregates. On the contrary, the overexpression of either the Drosophila or the human REEP1 protein was able to revert these phenotypes and promote neuronal resistance to ER stress. These studies identify a new function for the REEP1 protein in vivo and a novel cellular mechanism to prevent Tau toxicity

    Spectral properties of a partially spin-polarized one-dimensional Hubbard/Luttinger superfluid

    Full text link
    We calculate the excitation spectra of a spin-polarized Hubbard chain away from half-filling, using a high-precision momentum-resolved time-dependent Density Matrix Renormalization Group method. Focusing on the U<0 case, we present in some detail the single-fermion, pair, density and spin spectra, and discuss how spin-charge separation is altered for this system. The pair spectra show a quasi-condensate at a nonzero momentum proportional to the polarization, as expected for this Fulde-Ferrel-Larkin-Ovchinnikov-like superfluid.Comment: 4 pages, 3 low resolution color fig

    Pair correlations of a spin-imbalanced Fermi gas on two-leg ladders

    Full text link
    We study the pair correlations of a spin-imbalanced two-leg ladder with attractive interactions, using the density matrix renormalization group method (DMRG). We identify regions in the phase diagram spanned by the chemical potential and the magnetic field that can harbor Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like physics. Results for the pair structure factor, exhibiting multiple pairing wave-vectors, substantiate the presence of FFLO-like correlations. We further discuss phase separation scenarios induced by a harmonic trap, which differ from the case of isolated chains.Comment: To appear in Phys. Rev. Lett.; minor revision

    Non-equilibrium electronic transport in a one-dimensional Mott insulator

    Get PDF
    We calculate the non-equilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to non-interacting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density matrix renormalization group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.Comment: 12 pages RevTex4, 12 eps figures, as published, minor revision
    • …
    corecore