289 research outputs found

    Mean field theory for driven domain walls in disordered environments

    Full text link
    We study the mean field equation of motion for driven domain walls in random media. We discuss the two cases of an external constant as well as an oscillating driving force. Our main focus lies on the critical dynamics close to the depinning transition, which we study by analytical and numerical methods. We find power-law scaling for the velocity as well as the hysteresis loop area.Comment: 16 pages, 19 figures, submitted to Phys. Rev.

    Excitation spectrum of a 2D long-range Bose-liquid with a supersymmetry

    Full text link
    We have studied excitation spectrum of the specfic 2D model of strongly interacting Bose particles via mapping of the many-body Schrodinger equation in imaginary time to the classical stochastic dynamics. In a broad range of coupling strength Ī±\alpha a roton-like spectrum is found, with the roton gap being extremely small in natural units. A single quantum phase transition between strongly correlated supefluid and quantum Berezinsky crystal is found.Comment: 6 pages, 6 figure

    Flavor Mixing, Neutrino Masses and Neutrino Oscillations

    Get PDF
    We study a model for the mass matrices of the leptons. We are ablte to relate the mass eigenvalues of the charged leptons and of the neutrinos to the mxiing angles and can predict the masses of the neutrinos. We find a normal hierarchy -the masses are 0.004 eV, 0.01 eV and 0.05 eV. The atmospheric mixing angle is given by the mass ratios of the charged leptons and of the neutrinos. We find 38 degrees, consistent with the experiments. The mixing element, connecting the first neutrino with the electron, is found to be 0.05.Comment: 4 page

    Possible mechanisms for initiating macroscopic left-right asymmetry in developing organisms

    Full text link
    How might systematic left-right (L/R) asymmetry of the body plan originate in multicellular animals (and plants)? Somehow, the microscopic handedness of biological molecules must be brought up to macroscopic scales. Basic symmetry principles suggest that the usual "biological" mechanisms -- diffusion and gene regulation -- are insufficient to implement the "right-hand rule" defining a third body axis from the other two. Instead, on the cellular level, "physical" mechanisms (forces and collective dynamic states) are needed involving the long stiff fibers of the cytoskeleton. I discuss some possible scenarios; only in the case of vertebrate internal organs is the answer currently known (and even that is in dispute).Comment: 9 pp latex, 6 figures. Proc. Landau 100 Memorial Conf. (Chernogolovka, June 2008); to appear AIP Conf. series. (v2: added 4 ref's + revised Sec 2.2.

    Statistical physics of dyons and quark confinement

    Full text link
    We present a semiclassical approach to the SU(N) Yang--Mills theory whose partition function at nonzero temperatures is approximated by a saddle point -- an ensemble of an infinite number of interacting dyons of N kinds. The ensemble is governed by an exactly solvable 3d quantum field theory, allowing calculation of correlations functions relevant to confinement. We show that known criteria of confinement are satisfied in this semiclassical approximation: (i) the average Polyakov line is zero below some critical temperature, and nonzero above it, (ii) a quark-antiquark pair has linear rising potential energy, (iii) the average spatial Wilson loop falls off exponentially with the area, (iv) N^2 gluons are canceled out from the spectrum, (v) the critical deconfinement temperature is in good agreement with lattice data. Using the same approximation, we find confinement for the exceptional gauge group G(2) and a first-order deconfinement transition, also in agreement with lattice findings.Comment: Invited talk at the Landau Memorial Conference "Advances in Theoretical Physics", June 22-26, 2008, Chernogolovka, to be published in the Proceeding

    Proximity-induced superconductivity in graphene

    Full text link
    We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).Comment: 4 pages, 3 figure

    Coherent transport in Josephson-Junction rhombi chain with quenched disorder

    Full text link
    We consider a chain of Josephson-junction rhombi (proposed originally by Doucot and Vidal) in quantum regime. In a regular chain with no disorder in the maximally frustrated case when magnetic flux through each rhombi \Phi_r is equal to one half of superconductive flux quantum \Phi_0, Josephson current is due to correlated transport of pairs of Cooper pairs, i.e. charge is quantized in units of 4e4e. Sufficiently strong deviation \delta\Phi =|\Phi_r-\Phi_0/2| > \delta\Phi^c from the maximally frustrated point brings the system back to usual 2e2e-quantized supercurrent. For a regular chain \delta\Phi^c was calculated by us previously. Here we present detailed analysis of the effect of quenched disorder (random stray charges and random fluxes piercing rhombi) on the pairing effect.Comment: 21 pages, 5 figure

    Weak Charge Quantization on Superconducting Islands

    Full text link
    We consider the Coulomb blockade on a superconductive quantum dot strongly coupled to a lead through a tunnelling barrier and/or normal diffusive metal. Andreev transport of the correlated pairs leads to quantum fluctuations of the charge on the dot. These fluctuations result in exponential renormalization of the effective charging energy. We employ two complimentary ways to approach the problem, leading to the coinciding results: the instanton and the functional RG treatment of the non-linear sigma model. We also derive the charging energy renormalization in terms of arbitrary transmission matrix of the multi-channel interface.Comment: 21 pages, 4 eps figures, RevTe

    Order and Creep in Flux Lattices and CDWs Pinned by Planar Defects

    Full text link
    The influence of randomly distributed point impurities \emph{and} planar defects on the order and transport in type-II superconductors and related systems is considered theoretically. For planar defects of identical orientation the flux line lattice exhibits a new glassy phase dominated by the planar defects with a finite compressibility, a transverse Meissner effect, large sample to sample fuctuations of the susceptibility and an exponential decay of translational long range order. The flux creep resistivity for currents JJ parallel to the defects is Ļ(J)āˆ¼expā”āˆ’(J0/J)3/2\rho(J)\sim \exp-(J_0/J)^{3/2} . Strong disorder enforces an array of dislocations to relax shear strain

    Magnus Force in Discrete and Continuous Two-Dimensional Superfluids

    Get PDF
    Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on coarse ones. We interpret this result as a transition from the full Magnus force in the Galilean-invariant limit to vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex motion in Josephson junction arrays.Comment: 6 pages, 7 figures; published in Phys. Rev.
    • ā€¦
    corecore