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Motion of vortices in two-dimensional superfluids in the classical limit is studied by solving the Gross-
Pitaevskii equation numerically on a uniform lattice. We find that, in the presence of a superflow directed along
one of the main lattice periods, vortices move with the superflow on fine lattices but perpendicular to it on
coarse ones. We interpret this result as a transition from the full Magnus force in a Galilean-invariant limit to
vanishing effective Magnus force in a discrete system, in agreement with the existing experiments on vortex
motion in Josephson junction arrays.
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I. INTRODUCTION

There is a long-standing interest in how the Magnus force,
acting on vortices in superfluids and superconductors,
changes as the system moves away from the Galilean-
invariant �GI� limit. Indeed, experiments indicate that the
effective Magnus force is very small both in conventional
bulk superconductors—except for very clean ones1—and in
“discrete” superconductors, formed by Josephson-junction
arrays �JJAs�.2 In the first instance, there is a convincing
explanation for this smallness, based on the spectral flow of
fermions at the vortex core.3–7 The spectral flow creates an
additional force on the vortex that reduces the total, effective
Magnus force nearly to zero. However, the second case has
remained something of a mystery.

Various explanations of the smallness of the Magnus force
in JJA have been reviewed in Ref. 8. One proposal is that in
this case the Magnus force is proportional not to the total
density of electrons, but only to the “offset charges,” given
by the deviation of the system from electrical neutrality.9

Another proposal is that the effective Magnus force vanishes
exactly as a consequence of the particle-hole symmetry.10

However, Volovik8 has argued that the particle-hole symme-
try in these systems is not exact, and as a result the effective
Magnus force is nonzero, although small. Finally, we men-
tion that when the Josephson barrier is metallic, cancellation
of the Magnus force can be explained11 by a spectral flow
mechanism similar to that in bulk superconductors. This,
however, does not work when the barrier is insulating.

There is a common theme to the above proposals: they all
make use of specific properties of the electronic spectra or,
alternatively, of the particle-hole symmetry already at the
level of an effective description—in terms of phases and
charges of superconducting islands.10 As we will see below,
that symmetry, present in the simplest model of JJA, results
in fact from neglecting the coupling between phase gradients
and density fluctuations. The question then is whether this
assumption indeed applies in the discrete limit, or a nonzero
Magnus force persists no matter how discrete the system
becomes.

In this paper, we report results of a numerical study of the
Magnus force. These results have been obtained by numeri-
cal solution of the classical Gross-Pitaevskii �GP� equation
in two dimensions �2D�. Since the classical approximation

neglects the commutator of the Bose fields �, �† in com-
parison with the average density nave= ��†��, it requires that
the number of particles per site be large enough. More pre-
cisely, the classical limit in JJA is reached when the Joseph-
son energy is much larger than the charging energy.2 An
equivalent condition is

navea
2 �

1

nave�
2 , �1�

where a is the lattice spacing �we assume a square or a
nearly square lattice� and � is the “healing” length, defined
below. The right-hand side of �1� is a dimensionless measure
of the interaction strength.

To explore the role of discreteness, we solve the time-
dependent GP equation on uniform spatial lattices with dif-
ferent values of the lattice spacing a. The relevant length
scale to which a can be compared is the “healing” length �.
When a��, we reach the nearly GI limit, in which the GP
equation describes a quasi-continuous neutral superfluid.
Vortices have a core of size �, which is resolved by the
lattice. In the opposite limit, a��, vortices have no core, in
the sense that there is no significant depletion of density
anywhere. The lattice sites can then be thought of as corre-
sponding to individual islands, each of which is character-
ized by a value of the phase variable—a model of a JJA.

More precisely, the Lagrangian of our model in rescaled
variables, for the case of a square lattice, is

L = �
j

� j
†�i�t −

1

2
�� j�2 + const�� j −

1

a2�
�ij�

��i − � j�2, �2�

where the first sum is over all lattice sites, and the second is
over all nearest neighbors. Note that if we write �
=	n exp�i�� and neglect fluctuation of density �n=n−nave in
the second �gradient� sum in Eq. �2�, the classical equations
of motion become invariant under the transformation �→
−�, �n→−�n. This is the particle-hole symmetry that was
used in Ref. 10 to argue the absence of Magnus force in
JJAs. Here, we study the complete Lagrangian �2�, including
the coupling between �n and the phase gradients.

On a coarse lattice, and in the presence of superflow, the
rotational invariance is broken so strongly that definition of
the Magnus force becomes a nontrivial matter. Indeed, we
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have found that in general vortices and antivortices do not
even move symmetrically with respect to the superflow.
However, when the superflow is along one of the lattice’s
main periods, they do, and we concentrate on this case in
what follows.

We have found that while on fine lattices vortices move
with the superflow, as expected in the GI limit, on coarse
lattices they move perpendicular to it. We interpret this as
vanishing of the effective Magnus force in the discrete limit,
in agreement with the experiments on JJAs.2

The paper is organized as follows. We describe details of
the numerical procedure in Sec. II. In Sec. III, we describe a
phenomenological model that we use to interpret our numeri-
cal results. This model allows us to convert measurements of
the longitudinal and transverse velocities of a vortex into
values of the effective Magnus and drag force coefficients.
Numerical results are presented in Sec. IV. Section V is a
conclusion.

II. NUMERICAL METHOD

A. Dimensionless variables

The continuum GP equation has the form

i
��

�t
= −

1

2m
�2� + g���2� , �3�

where � is a complex scalar, the order parameter of the
superfluid, m is the mass of a fluid particle �in units where
�=1�, and g is the interaction constant. For computational
purposes, it is convenient to scale out the parameters by ex-
pressing length, time, and the order parameter in their “natu-
ral” units. A natural unit of length is the “healing” length

� = �2mgnave�−1/2, �4�

where nave= ��†�� is the average density of the fluid. Then,
new, tilded variables are defined by the following relations:

x = x̃� , �5�

t = t̃
1

gnave
, �6�

� = �	nave, . �7�

In the new variables, the GP equation simplifies to

i
��

� t̃
= − �̃2� + ���2� . �8�

Note that by virtue of �7� the rescaled average density is
always equal to 1:

ñave = ��†�� = 1. �9�

B. Computational scheme

To study the motion of vortices, we discretize Eq. �8� on a
uniform spatial lattice and solve it as an initial value prob-
lem, i.e., knowing the state of the system at some initial

moment, we calculate the state at later times. This requires
imposing suitable initial and boundary conditions �see be-
low�. The lattice in general has different lattice spacings in
the x and y directions. We used an operator-splitting algo-
rithm with separate updates for the Laplacian and potential
terms in �8�. Updates corresponding to the Laplacian were
done using the Crank-Nicholson scheme, which is uncondi-
tionally stable. The complete algorithm is unitary and
second-order accurate in space and time.

C. Boundary and initial conditions

To avoid effects of the boundaries on the motion of the
vortices, we use periodic boundary conditions in both direc-
tions. The initial states for the runs are created in the follow-
ing way. We begin with the following field, containing a
vortex and an antivortex �the presence of an antivortex is
necessary to satisfy the boundary conditions�:

��z� = 

z+��Z+�

�z − z+�
�z − z+� 


z−��Z−�

�z* − z−
*�

�z − z−�
, �10�

where Z+ and Z− are the desired �complex� positions of the
vortex and antivortex, and �Z±� denotes the set of positions
including Z± and a few mirror images with respect to the
boundary. Then, evolving the system in the imaginary time,
we cool the system down. Positions of the vortices during the
cooling do not change, so we can place the vortices in con-
venient locations. To minimize effects of the vortex-
antivortex interaction, we place them half of the total lattice
length apart. After that, we turn on a superflow and begin
evolution in real time. A representative initial state, before
and after the superflow was turned on, can be seen in Figs. 1
and 2.

D. Velocity measurements

The aim of the simulations is to observe the motion of
vortices in the presence of superflow. The order parameter of
the superfluid, being a complex scalar, can be written as

� = 	nei�, �11�

where n is the local density of the superfluid. Then, 2�� is
the local superfluid velocity. The average velocity of the su-

perflow U� is calculated as an average over the entire lattice.

The velocity of a vortex V� , on the other hand, is obtained
from direct tracking of the vortex position during the simu-
lation. In a GI system, we expect vortices to move with the

flow: V� =U� . If the invariance is broken, they may behave
differently. To see the actual behavior, we break GI by solv-
ing the problem on increasingly coarser lattices.

III. PHENOMENOLOGICAL MODEL

While the vortex velocity can be measured directly in our
simulations, converting these measurements into a value of
the Magnus force requires a model of forces acting on the
vortex. A fairly conventional model is available for an iso-
tropic fluid �which we expect to apply also in the GI limit on
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a lattice�, but on coarse lattices modifications are needed. In
this section, we review the conventional model, and then
describe new effects introduced by the lattice.

A. Magnus force in isotropic fluid

The conventional �phenomenological� model includes
three forces acting on a vortex �see Fig. 3�. First, there is a

drag force F� drag=−	V� , directed against the vortex velocity. It
accounts for longitudinal momentum transfer from the vortex
to the lattice and to excitations �quasiparticles�. The latter
channel is dissipative, i.e., the work done by the drag force
goes into excitation of the quasiparticle subsystem. Close to
the GI limit, we expect the classical momentum transfer to
quasiparticles to be ineffective, and hence the drag to be
small.

Second, there is an effective Magnus force F� Magnus=

−
vẑ�V� , perpendicular to the vortex velocity.
Finally, there is a force perpendicular to the superflow

velocity and accounting for the work done by vortices as
they unwind the superflow. We refer to it as the Lorentz

force, F� Lorentz=
uẑ�U� . The coefficients 	, 
u, and 
u refer
to unit inertial mass. We will never need to discuss the actual
value of the vortex inertial mass in this paper.

So, the equation of motion for the vortex is

dV�

dt
= F� drag + F� Magnus + F� Lorentz = − 	V� − 
vẑ � V� + 
uẑ � U� .

�12�

In complex notation, where we identify the x direction with
the real axis and the y direction with the imaginary axis, the
equation becomes

dV

dt
= − �V + U , �13�

where �=	+ i
v and = i
u.
The solution is easily found to be

V =


�
U + C exp�− �t� , �14�

where C is an integration constant. The exponential term is a
transient that rapidly decays and turns out to be too small to
be observed even at small times. At large times, it drops out
altogether. Then, the solution becomes a motion with a con-
stant velocity at an angle �v, given by

FIG. 1. �Color online� A representative initial state with two
vortices of topological charge 1�+� and −1�−� before superflow is
turned on.

FIG. 2. �Color online� A representative initial state after super-
flow is turned on.

FIG. 3. �Color online� Diagram of forces acting on an �anti�vor-

tex in an isotropic superfluid: F� Lorentz perpendicular to the superflow

velocity U� , F� Magnus perpendicular to the vortex velocity V� , and F� drag

opposite to V� . In dynamic equilibrium the sum of all forces van-
ishes, and the vortex moves at an angle �v=� /2−�Hall with respect
to the superflow.
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tan �v = arg


�
= 	/
v, �15�

with respect to the supercurrent. The angle �v is related to the
Hall angle �Hall frequently used in the literature by �v=� /2
−�Hall.

The conclusion that vortices move in straight lines is well
born out numerically. Notice that the steady velocity V
= � /��U depends only on the ratios 
v /
u and 	 /
u, char-
acterizing the Magnus and drag forces. Measuring two com-
ponents of the steady velocity, we obtain two equations for
these two ratios, which can be solved with the result


v


u
=

VxUx + VyUy

Vx
2 + Vy

2 , �16�

	


u
=

VyUx − VxUy

Vx
2 + Vy

2 . �17�

B. Magnus force on the lattice

An immediate consequence of the above expressions is
that changing the sign of vorticity, i.e., the signs of the co-
efficients 
u and 
v, changes the motion of a vortex �which
now becomes an antivortex� in such a way that the projection

of the vortex velocity on the direction of U� remains the
same, while the orthogonal projection changes sign. In other
words, a vortex and an antivortex move symmetrically with
respect to the superflow. In general, for coarse lattices and
superflow that is not parallel to one of the main periods of
the lattice, we have found that the motion does not have that
property. We interpret this as a result of anisotropy intro-
duced by the lattice and by the superflow direction. To ac-
count for anisotropy, the net force in Eq. �12� needs to be
replaced by

F� = − M̂V� − 
vẑ � V� + 
uẑ � U� , �18�

where M̂ is a symmetric matrix that can depend on the di-

rection of U� . Such a matrix has three independent elements,
which now replace the single drag coefficient of the isotropic
model.

On the other hand, if the superflow velocity is along one
of the main periods of the lattice, the vortex and antivortex
do move symmetrically with respect to it. In this case, we
can introduce the effective Magnus force and drag coeffi-
cients that are defined by Eqs. �16� and �17�. In what follows,

the superflow is always oriented along the x direction, U�

= �Ux ,0�, and we present two types of results: one type is the
ratios Vx /Ux and Vy /Ux themselves, which are directly mea-
surable quantities, and the other is the effective force coeffi-
cients computed from Eqs. �16� and �17�.

IV. RESULTS

Simulations with different total lattice lengths have been
carried out, with similar outcomes. The ratio of the vortex
velocity to the superflow velocity for square lattices of the

same length 600 �in the rescaled length units�, constant su-

perflow velocity U� = �0.07,0�, and different lattice spacings
is shown in Fig. 4. Because the vortex has to overcome pin-
ning in the lattice cells, it moves by detectable jumps. The
data points were obtained by averaging the measured vortex
velocities over long time intervals that begin some time after
the start of the simulation.

We see that when the lattice spacing is close to 1, in our
dimensionless units, we obtain results expected for the GI

limit: Vx /U1 and Vy /U0, i.e., V� U� , which means that
vortices go with the flow. For large spacings, i.e., in the
discrete limit, the behavior changes radically. Now, Vx /U
0 and Vy /U�1, i.e., vortices move perpendicular to the
current. Between the two limits, there is an interesting re-
gime when Vx=Vy, corresponding to motion with a Hall
angle of 45°.

Let us see how these results are reflected in the param-
eters of our phenomenological model. As discussed in Sec.
III B, we determine the effective force coefficients using

FIG. 5. �Color online� The ratios of the drag and Magnus force
coefficients to the Lorentz force coefficient, as functions of the
lattice spacing. The length of the lattice is 600; the superflow ve-

locity is U� = �0.07,0� in dimensionless units.

FIG. 4. �Color online� Longitudinal and transverse velocities of
the vortex in units of the superflow velocity for different lattice
spacings. The length of the lattice is 600; the superflow velocity is

U� = �0.07,0� in dimensionless units.
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Eqs. �16� and �17�. The result is shown in Fig. 5. In the
quasi-continuous limit, we obtain 
v /
u1 and 	 /
u�1,
meaning that the Magnus force coefficient is nearly equal to
the Lorentz force coefficient, while the drag coefficient is
very small in comparison.

In contrast, in the discrete limit, the Magnus force is
nearly absent. This is our main result: we have observed a
gradual vanishing of the Magnus force as we go from the
continuous limit to the discrete one. We note that, while the
Magnus force changes gradually, the drag coefficient has a
rather sharp peak at the beginning of the region where 
v
	, i.e., when the vortex begins to move at 45° to the flow.

The simplest intuitive picture that might account for the
vanishing of the Magnus force is as follows. As the lattice
spacing increases, the depletion of the density in the region
of large phase gradients �the �n����2 coupling discussed af-
ter Eq. �2�� becomes smaller, so that the system approaches
the particle-hole-symmetric limit, in which the Magnus force
is absent.10 A small remaining force, caused by deviations
from this ideal limit, can be overcome by a force exerted by
the lattice, resulting in zero net Magnus force.

To make sure that the variations of the observables with
the lattice spacing are not due to variation in the population
of short-wavelength modes, we check the power spectra. Fig-
ure 6 shows the power spectrum of the field � in the middle
of the simulation for three different values of the lattice spac-
ing. From the plot, we infer that there are no major differ-
ences in the power spectra.

It is interesting to further explore the surprisingly broad
intermediate range of lattice spacing where, as seen in Fig. 4,
the Hall angle is close to 45°. We have found that this pre-
ferred direction is related to the geometry of the lattice, i.e.,
it remains along the diagonal of the unit cell even after we go
from the square unit cell to a rectangular one �see Fig. 7�.

V. CONCLUSION

The main result of the present paper is that in the classical
limit �1�, vortices in superfluids on coarse �but uniform� lat-
tices, in the presence of a superflow parallel to one of the
main periods, move perpendicular to the superflow. We in-
terpret this result as a transition from the full Magnus force
in the Galilean-invariant limit to vanishing effective Magnus
force in the discrete limit, in agreement with the observed
smallness of the Magnus force in JJAs.2 Our results are
based on direct numerical simulations of the discrete super-
fluid �2� and do not assume a priori any symmetry that might
prohibit the Magnus force in the discrete limit.

Another potential application of our results is vortex mo-
tion in cold atomic gases confined in optical lattices. If a
sufficient degree of experimental control over parameters in
either of these systems can be reached, intermediate points in
the transition from the Galilean-invariant limit to the discrete
limit may become observable. Notably, in our simulations
these intermediate points include a somewhat counterintui-
tive regime where, for a broad range of lattice spacings, the
average vortex velocity is along the diagonal of the unit cell.
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