523 research outputs found

    Evaluation of a Seven-Week Web-Based Happiness Training to Improve Psychological Well-Being, Reduce Stress, and Enhance Mindfulness and Flourishing: A Randomized Controlled Occupational Health Study

    Get PDF
    Background:. As distress in society increases, including work environments, individual capacities to compete with stress have to be strengthened. Objective:. We examined the impact of a web-based happiness training on psychological and physiological parameters, by self-report and objective means, in an occupational health setting. Methods:. Randomized controlled trial with 147 employees. Participants were divided into intervention (happiness training) and control groups (waiting list). The intervention consisted of a seven-week online training. Questionnaires were administered before, after, and four weeks after training. The following scales were included: VAS (happiness and satisfaction), WHO-5 Well-being Index, Stress Warning Signals, Freiburg Mindfulness Inventory, Recovery Experience Questionnaire, and Flourishing Scale. Subgroup samples for saliva cortisol and alpha-amylase determinations were taken, indicating stress, and Attention Network Testing for effects on attention regulation. Results:. Happiness (P = 0.000; d = 0.93), satisfaction (P = 0.000; d = 1.17), and quality of life (P = 0.000; d = 1.06) improved; perceived stress was reduced (P = 0.003; d = 0.64); mindfulness (P = 0.006; d = 0.62), flourishing (P = 0.002; d = 0.63), and recovery experience (P = 0.030; d = 0.42) also increased significantly. No significant differences in the Attention Network Tests and saliva results occurred (intergroup), except for one saliva value. Conclusions:. The web-based training can be a useful tool for stabilizing health/psychological well-being and work/life balance

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Spanish Validation of the Flourishing Scale in the General Population

    Get PDF
    Well-being research and its measurement have grown in the last two decades. The objective of this study was to adapt and validate the Flourishing Scale in a sample of Spanish adults. This was a cross-sectional study using a non-probabilistic sample of 999 Spanish general adult population participants. The psychometric properties of the scale were analysed from an exploratory and confirmatory perspective. Exploratory factor analysis showed a one-factor solution explaining 42.3% of the variance; an internal consistency of .846; temporal reliability correlation of .749; convergent validity with the Satisfaction with Life Scale of .521 and criterion validity with positive and negative affect (PANAS), pessimism and optimism (LOT-R) ranging from .270 to .488. Confirmatory factor analysis testing the one-factor solution showed a χ2 of 65.57 df = 20; CFI of .982, RMSEA of .06, average variance extracted index of .518 and composite reliability index of .841. Results showed that the Spanish version of the FS is a reliable and valid method for measuring high levels of well-bein

    Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) has been directly detecting gravitational waves from compact binary mergers since 2015. We report on the first use of squeezed vacuum states in the direct measurement of gravitational waves with the Advanced LIGO H1 and L1 detectors. This achievement is the culmination of decades of research to implement squeezed states in gravitational-wave detectors. During the ongoing O3 observation run, squeezed states are improving the sensitivity of the LIGO interferometers to signals above 50 Hz by up to 3 dB, thereby increasing the expected detection rate by 40% (H1) and 50% (L1)

    Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

    Get PDF
    We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10⁻⁴ M⊙c² and 1.28×10⁻¹  M⊙c² for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data

    Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run

    Get PDF
    We present an Advanced LIGO and Advanced Virgo search for sub-solar mass ultracompact objects in data obtained during Advanced LIGO's second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational wave candidates consistent with sub-solar mass ultracompact binaries with at least one component between 0.2 - 1.0_⊙. We use the null result to constrain the binary merger rate of (0.2_⊙, 0.2_⊙) binaries to be less than 3.7 x 10⁵ Gpc⁻³ yr⁻¹ and the binary merger rate of (1.0⊙, 1.0_⊙) binaries to be less than 5.2 x 10³ Gpc⁻³ yr⁻¹. Sub-solar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with sub-solar masses. Assuming a particular primordial black hole formation model, we constrain a population of merging 0.2_⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0_⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict sub-solar mass binaries
    corecore