46 research outputs found

    Nucleolin links to arsenic-induced stabilization of GADD45α mRNA

    Get PDF
    The present study shows that arsenic induces GADD45α (growth arrest and DNA damage inducible gene 45α) mainly through post-transcriptional mechanism. Treatment of the human bronchial epithelial cell line, BEAS-2B, with arsenic(III) chloride (As(3+)) resulted in a significant increase in GADD45α protein and mRNA. However, As(3+) only exhibited a marginal effect on the transcription of the GADD45α gene. The accumulation of GADD45α mRNA is largely achieved by the stabilization of GADD45α mRNA in the cellular response to As(3+). As(3+) is able to induce binding of mRNA stabilizing proteins, nucleolin and less potently, HuR, to the GADD45α mRNA. Although As(3+) was unable to affect the expression of nucleolin, treatment of the cells with As(3+) resulted in re-distribution of nucleolin from nucleoli to nucleoplasm. Silencing of the nucleolin mRNA by RNA interference reversed As(3+)-induced stabilization of the GADD45α mRNA and accumulation of the GADD45α protein. Stabilization of GADD45α mRNA, thus, represents a novel mechanism contributing to the production of GADD45α and cell cycle arrest in response to As(3+)

    JNK1 activation predicts the prognostic outcome of the human hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with an extremely poor prognosis. The classification of HCC based on the molecular signature is not well-established. RESULTS: In the present study, we reported HCC signature genes based on the JNK1 activation status in 31 HCC specimens relative to the matched distal noncancerous liver tissue from 31 patients. The HCCs with high JNK1 (H-JNK1) and low JNK1 (L-JNK1) were sub-grouped. Two different signature gene sets for both H-JNK1 and L-JNK1 HCC were identified through gene expression profiling. A striking overlap of signature genes was observed between the H-JNK1 HCC and the hepatoblastoma or hepatoblastoma-type HCC. Many established biomarkers for hepatic progenitor cells were over-expressed in H-JNK1 HCC, including AFP, TACSTD1, KRT19, KRT7, THY1, and PROM1. In addition, the majority of the most up-regulated genes were those associated with metastasis and earlier recurrence, whereas the genes for normal liver function were substantially down-regulated in H-JNK1 HCC tissue. A Kaplan-Meier plot demonstrated that the survival of the patients with H-JNK1 HCC was severely impaired. CONCLUSION: Accordingly, we believe that the H-JNK1 HCC may originate from hepatic progenitor cells and is associated with poorer prognosis. The status of JNK1 activation in HCC tissue, thus, might be a new biomarker for HCC prognosis and therapeutic targeting

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Drug Repositioning of Inflammatory Bowel Disease Based on Co-Target Gene Expression Signature of Glucocorticoid Receptor and TET2

    No full text
    The glucocorticoid receptor (GR) and ten-eleven translocation 2 (TET2), respectively, play a crucial role in regulating immunity and inflammation, and GR interacts with TET2. However, their synergetic roles in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), remain unclear. This study aimed to investigate the co-target gene signatures of GR and TET2 in IBD and provide potential therapeutic interventions for IBD. By integrating public data, we identified 179 GR- and TET2-targeted differentially expressed genes (DEGs) in CD and 401 in UC. These genes were found to be closely associated with immunometabolism, inflammatory responses, and cell stress pathways. In vitro inflammatory cellular models were constructed using LPS-treated HT29 and HCT116 cells, respectively. Drug repositioning based on the co-target gene signatures of GR and TET2 derived from transcriptomic data of UC, CD, and the in vitro model was performed using the Connectivity Map (CMap). BMS-536924 emerged as a top therapeutic candidate, and its validation experiment within the in vitro inflammatory model confirmed its efficacy in mitigating the LPS-induced inflammatory response. This study sheds light on the pathogenesis of IBD from a new perspective and may accelerate the development of novel therapeutic agents for inflammatory diseases including IBD

    Structured development environment based on the object-oriented concepts

    No full text
    corecore