19 research outputs found

    Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany

    Get PDF
    Many studies have addressed the challenge of heat stress for human health in recent years. However, appropriate concepts and methods for quantifying heat-stress hazards, vulnerabilities and risks are yet under development. The objective of this study is to test the applicability of a risk concept and associated event-based risk-analysis method for quantifying heat-stress related mortality. The study reveals that about 5 % of all deaths between 2001 and 2010 in Ber­lin can statistically be related to elevated air temperatures. Most of the affected people are 65 years or older, while the mortality of people below 65 years shows only weak statistical correlation to air temperature. Mean daily air tempera­ture was best suitable for risk analysis. The results demonstrate that the novel approach for quantitative risk analysis delivers statistically highly significant results on the city scale when analysing heat stress on an event basis. Performing the risk analysis on a spatially distributed data basis for city districts would allow to account for spatial variations of ur­ban climates and demographic properties. Using indoor climate data is expected to provide new insight into heat-stress related mortality risks, particularly for highly vulnerable persons like elderly persons or patients residing in hospitals

    Three-Dimensional Observation of Atmospheric Processes in Cities

    Get PDF
    To cope with weather and climate-induced impacts as well as with air pollution in cities, the German research programme “Urban Climate Under Change” ([UC]2) aims at developing, testing and validating a new urban climate model, which is able to cover the full range of temporal and spatial scales of urban atmospheric processes. The project “Three-dimensional Observation of Atmospheric Processes in Cities” (3DO), which forms the module B of the [UC]2 research programme, aims at acquisition of comprehensive, accurate three-dimensional observational data sets on weather, climate and air quality in the German cities of Berlin, Hamburg and Stuttgart. Data sets from long-term observations and intense observation periods allow for evaluation of the performance of a new urban climate model called PALM‑4U that is developed by the project “Model-based city planning and application in climate change” (MOSAIK), which forms the module A of the [UC]2 research programme. This article focuses on collaborative activities for compilation of existing and acquisition of new observational data within the 3DO project

    BioCAS: Biometeorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality

    Get PDF
    An urban climate analysis system for Seoul was combined with biometeorological models for the spatially distributed assessment of heat stress risks. The Biometeorological Climate impact Assessment System (BioCAS) is based on the Climate Analysis Seoul (CAS) workbench which provides urban planners with gridded data relevant for local climate assessment at 25 m and 5 m spatial resolutions. The influence of building morphology and vegetation on mean radiant temperature Tmrt was simulated by the SOLWEIG model. Gridded hourly perceived temperature PT was computed using the Klima-Michel Model for a hot day in 2012. Daily maximum perceived temperature PTmax was then derived from these data and applied to an empirical-statistical model that explains the relationship between PTmax and excess mortality rate rEM in Seoul. The resultant rEM map quantifies the detrimental impact of hot weather at the building scale. Mean (maximum) values of rEM in old and new town areas in an urban re-development site in Seoul were estimated at 2.3 % (50.7 %) and 0 % (8.6 %), respectively, indicating that urban re-development in the new town area has generally resulted in a strong reduction of heat-stress related mortality. The study illustrates that BioCAS can generally be applied for the quantification of the impacts of hot weather on human health for different urban development scenarios. Further improvements are required, particularly to consider indoor climate conditions causing heat stress, as well as socio-economic status and population structure of local residents

    Urban Climate Under Change [UC]2 – A National Research Programme for Developing a Building-Resolving Atmospheric Model for Entire City Regions

    Get PDF
    Large cities and urban regions are confronted with rising pressure by environmental pollution, impacts of climate change, as well as natural and health hazards. They are characterised by heterogeneous mosaics of urban structures, causing modifications of atmospheric processes on different temporal and spatial scales. Planning authorities need reliable, locally relevant information on urban atmospheric processes, providing fine spatial resolutions in city quarters or street canyons, as well as projections of future climates, specifically downscaled to individual cities. Therefore, building-resolving urban climate models for entire city regions are required as tool for urban development and planning, air quality control, as well as for design of actions for climate change mitigation and adaptation. To date, building-resolving atmospheric models covering entire large cities are mostly missing. The German research programme “Urban Climate Under Change” ([UC]2) aims at developing a new urban climate model, to acquire three-dimensional observational data for model testing and validation, and to test its practicability and usability in collaboration with relevant stakeholders to provide a scientifically sound and practicable instrument to address the above mentioned challenges. This article provides an outline of the collaborative activities of the [UC]2 research programme

    Klimaanalyse der Stadt ZĂĽrich (KLAZ)

    No full text
    Die Studie "Regionale Klimaanalyse der Stadt Zürich (KLAZ)" wurde im Auftrag der Umweltschutzfachstelle der Stadt Zürich erstellt. KLAZ ist damit eine auf die räumliche Planung bezogene regionale Klimaanalyse der Stadt Zürich. Die Berücksichtigung von Klima und Lufthygiene in der räumlichen Planung hat das allgemeine Ziel, die zukünftige Entwicklung der Landnutzung und ihre konkrete Ausgestaltung so zu planen, dass negative Effekte auf das lokale Klima reduziert bzw. vermieden, positive Auswirkungen hingegen erhalten bzw. gefördert werden. Mit KLAZ sollte dieses allgemeine Ziel für die Stadt Zürich unterstützt und in eine planerisch verwertbare Form umgesetzt werden. Sommerliche Wärmebelastung, austauscharme Wetterlagen sowie lokale und mesoskalige Windsysteme für das lokale Klima und die Luftqualität üben einen wesentlichen Einfluss auf die Klimasituation der Stadtbevölkerung aus. Zur Sicherung einer günstigen klimatischen und lufthygienischen Situation Zürichs kommt der planerischen Steuerung der Raumentwicklung eine besondere Bedeutung zu. Die Basis hierzu stellt die Generierung räumlich differenzierter Informationen zu den relevanten klimatischen und lufthygienischen Sachverhalten im Untersuchungsgebiet dar (Klimaanalyse). In einem zweiten Teil werden die Ergebnisse einer fachwissenschaftlich begründeten Bewertung unterzogen. Hierbei werden auf die Belange der räumlichen Planung ausgerichtete Zielsetzungen formuliert, welche die jeweiligen flächenspezifischen Wechselwirkungen zwischen Klima, Lufthygiene und Landnutzung berücksichtigen und entsprechende fachliche Empfehlungen zur Erreichung der jeweiligen Zielsetzungen umfassen (Planungshinweise). Die Konzeption von KLAZ ist, wie die anderen vorausgegangen Klimaanalysen in anderen Regionen (z.B. REKLISO (Regionale Klimaanalyse Südlicher Oberrhein), KABA (Klimaanalyse beider Basel)), auf die Verwendung automatisierter Verfahren hin ausgerichtet. Eingangsdaten in Form flächendeckender, hochaufgelöster, räumlich und zeitlich homogener Satellitendaten sowie GIS-Daten zur Erfassung der aktuellen Landbedeckung, des Reliefs und damit verbundener Strukturparameter, dienen der Generierung aller Zwischen- und Endergebnisse durch Anwendung numerischer Analyse- und Bewertungsmodelle ohne manuelle Intervention. Da im Allgemeinen Studien wie KLAZ nur in grösseren Zeitabständen wiederholt werden, werden nur solche Daten verwendet, die sich nicht auf meteorologische Einzelsituationen beziehen, sondern über viele Jahre hinaus Gültigkeit besitzen. Alle aus den Eingangsdaten abgeleiteten Informationsschichten können durch Umrechnung in verschiedene Rasterauflösungen in einer den Bedürfnissen der jeweiligen Fachplanung adäquaten räumlichen Differenzierung dargestellt und miteinander kombiniert werden

    Effects of Urbanization and Seasonal Cycle on the Surface Urban Heat Island Patterns in the Coastal Growing Cities: A Case Study of Casablanca, Morocco

    No full text
    The urban heat island (UHI) phenomenon is a harmful environmental problem in urban areas affecting both climatic and ecological processes. This paper aims to highlight and monitor the spatial distribution of Surface UHI (SUHI) in the Casablanca region, Morocco, using remote sensing data. To achieve this goal, a time series of Landsat TM/ETM+/OLI-TIRS images was acquired from 1984 to 2016 and analyzed. In addition, nocturnal MODIS images acquired from 2005 to 2015 were used to evaluate the nighttime SUHI. In order to better analyze intense heat produced by urban core, SUHI intensity (SUHII) was computed by quantifying the difference of land surface temperature (LST) between urban and rural areas. The urban core SUHII appears more significant in winter seasons than during summer, while the pattern of SUHII becomes moderate during intermediate seasons. During winter, the average daytime SUHII gradually increased in the residential area of Casablanca and in some small peri-urban cities by more than 1 °C from 1984 to 2015. The industrial areas of the Casablanca region were affected by a significant rise in SUHII exceeding 15 °C in certain industrial localities. In contrast, daytime SUHII shows a reciprocal effect during summer with emergence of a heat island in rural areas and development of cool islands in urban and peri-urban areas. During nighttime, the SUHII remains positive in urban areas year-round with higher values in winter as compared to summer. The results point out that the seasonal cycle of daytime SUHII as observed in the Casablanca region is different from other mid-latitude cities, where the highest values are often observed in summer during the day
    corecore