7,350 research outputs found

    Lernwerkstatt Englisch: Computer Assisted Language Learning (CALL)

    Full text link
    Neue Technologien und Medien, im Besonderen durch Formen computerunterstützten Lernens, haben in den letzten Jahren im Englischunterricht zunehmend an Bedeutung gewonnen, sei es durch die Nutzung von Sprachlernsoftware oder des Internets mit seinen vielfältigen Möglichkeiten zur zielsprachlichen Kommunikation sowie der Informations- und Materialbeschaffung. Mit der zunehmenden Verbreitung computerunterstützten Fremdsprachenlernens (Computer Assisted Language Learning, CALL) besteht auf Seiten vieler Englischlehrerinnen und -lehrer nach wie vor ein großer Bedarf an grundlegenden Informationen und dem Erwerb von Kenntnissen und Fähigkeiten, um die sich durch CALL eröffnenden Möglichkeiten sinnvoll und kreativ nutzen als auch potentielle Schwierigkeiten antizipieren und bewältigen zu können. (DIPF/Orig.

    an analysis of current capacity, needs and barriers

    Get PDF
    Background In times of increasing global challenges to health, it is crucial to create a workforce capable of tackling these complex issues. Even though a lack of GHE in Germany is perceived by multiple stakeholders, no systematic analysis of the current landscape exists. The aim of this study is to provide an analysis of the global health education (GHE) capacity in Germany as well as to identify gaps, barriers and future strategies. Methods An online search in combination with information provided by student representatives, course coordinators and lecturers was used to create an overview of the current GHE landscape in Germany. Additionally, a semi-structured questionnaire was sent to GHE educators and students engaged in global health (GH) to assess the capacity of German GHE, its barriers and suggested strategies for the future. Results A total of 33 GHE activities were identified at 18 German universities. Even though medical schools are the main provider of GHE (42%), out of 38 medical schools, only 13 (34%) offer any kind of GHE. Modules offered for students of other health-related professions constitute 27% of all activities. Most survey respondents (92%, n = 48) consider current GHE activities in Germany insufficient. Suggested formats were GHE as part of medical curricula (82%, n = 45) and dual degree MD/MPH or PhD programs. Most important barriers mentioned were low priority of GH at faculties and academic management levels (n = 41, 75%) as well as lack of necessary institutional structures (n = 33, 60%). Conclusions Despite some innovative academic approaches, there is clearly a need for more systematic GHE in Germany. GHE educators and students can take an important role advocating for more awareness at university management level and suggesting ways to institutionalize GHE to overcome barriers. This study provides key evidence, relevant perceptions and suggestions to strengthen GHE in Germany

    Neutron radiography for visualization of liquid metal processes: Bubbly flow for CO2 free production of Hydrogen and solidification processes in em field

    Get PDF
    The paper describes the results of two experimental investigations aimed to extend the abilities of a neutron radiography to visualize two-phase processes in the electromagnetically (EM) driven melt flow. In the first experiment the Argon bubbly flow in the molten Gallium - a simulation of the CO2 free production of Hydrogen process - was investigated and visualized. Abilities of EM stirring for control on the bubbles residence time in the melt were tested. The second experiment was directed to visualization of a solidification front formation under the influence of EM field. On the basis of the neutron shadow pictures the form of growing ingot, influenced by turbulent flows, was considered. In the both cases rotating permanent magnets were agitating the melt flow. The experimental results have shown that the neutron radiography can be successfully employed for obtaining the visual information about the described processes.LIMTEC

    Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields

    Full text link
    We present a method for the simultaneous observation of heteronuclear multi-quantum coherences (up to the 3rd order), which give an additional degree of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical shift is negligible. The nonequilibrium spin state is generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY allows a quantitative analysis of homo- and heteronuclei quantum coherences

    Vascular Changes Following Exercise-Induced Hyperthermia

    Get PDF
    Please view abstract in the attached PDF file

    A new technique for the reconstruction, validation, and simulation of hits in the CMS Pixel Detector

    Get PDF
    This note describes new techniques for the reconstruction/validation and the simulation of pixel hits. The techniques are based upon the use of pre-computed projected cluster shapes or ``templates''. A detailed simulation called Pixelav that has successfully described the profiles of clusters measured in beam tests of radiation-damaged sensors is used to generate the templates. Although the reconstruction technique was originally developed to optimally estimate the coordinates of hits after the detector became radiation damaged, it also has superior performance before irradiation. The technique requires a priori knowledge of the track angle which makes it suitable for the second in a two-pass reconstruction algorithm. However, the same modest angle sensitivity allows the algorithm to determine if the sizes and shapes of the cluster projections are consistent with the input angles. This information may be useful in suppressing spurious hits caused by secondary particles and in validating seeds used in track finding. The seed validation is currently under study but has the potential to significantly increase the speed of track finding in the offline reconstruction. Finally, a new procedure that uses the templates to re-weight clusters generated by the CMSSW simulation is described. The first tests of this technique are encouraging and when fully implemented, the technique will enable the fast simulation of pixel hits that have the characteristics of the much more CPU-intensive Pixelav hits. In particular, it may be the only practical technique available to simulate hits from a radiation damaged detector in CMSSW

    Orthogonal variability modeling to support multi-cloud application configuration

    Get PDF
    Cloud service providers benefit from a vast majority of customers due to variability and making profit from commonalities between the cloud services that they provide. Recently, application configuration dimensions has been increased dramatically due to multi-tenant, multi-device and multi-cloud paradigm. This challenges the configuration and customization of cloud-based software that are typically offered as a service due to the intrinsic variability. In this paper, we present a model-driven approach based on variability models originating from the software product line community to handle such multi-dimensional variability in the cloud. We exploit orthogonal variability models to systematically manage and create tenant-specific configuration and customizations. We also demonstrate how such variability models can be utilized to take into account the already deployed application parts to enable harmonized deployments for new tenants in a multi-cloud setting. The approach considers application functional and non-functional requirements to provide a set of valid multi-cloud configurations. We illustrate our approach through a case study
    corecore