16 research outputs found

    Sequence analysis of Schmallenberg virus genomes detected in Hungary

    Get PDF
    Since its emergence near the German–Dutch border in 2011, Schmallenberg virus (SBV) has been identified in many European countries. In this study, we determined the complete coding sequence of seven Hungarian SBV genomes to expand our knowledge about the genetic diversity of circulating field strains. The samples originated from the first case, an aborted cattle fetus without malformation collected in 2012, and from the blood samples of six adult cattle in 2014. The Hungarian SBV sequences shared ≥99.3% nucleotide (nt) and ≥97.8% amino acid (aa) identity with each other, and ≥98.9 nt and ≥96.7% aa identity with reference strains. Although phylogenetic analyses showed low resolution in general, the M sequences of cattle and sheep origin SBV strains seemed to cluster on different branches. Both common and unique mutation sites were observed in different groups of sequences that might help understanding the evolution of emerging SBV strains

    A harmadik szinapszis. Molekuláris kölcsönhatások az elhaló sejtek és az azokat eltávolító makrofágok, dendritikus sejtek között. = The third synapsis. Molecular interactions between dying cells and macrophages or dendritic cells.

    Get PDF
    A tudományos iskola keretében új interdiszciplináris kutatási terület megteremtésére került sor az apoptótikus sejtek és az azokat eltávolító sejtek közötti harmadi szinapszis tanulmányozására. Megállapítottuk, hogy a transzglutamináz 2 (TG2) enzim szerepet játszik az apoptotikus sejtek eltávolításában, az enzim hiányában autoimmun kórkép alakúl ki. A TG2 bejuthat a sejmagba, sejtbiokémiai hatása összefügg génkifejeződés befolyásolásával. Alzheimer kórban a TG2 résztvesz kovalensen összekötött fehérje aggregátumok létrehozásában. A TG2 védőhatást fejt ki a sejtelhalással szemben májsejtekben és szívizomsejtekben G fehérje, ill. protein diszulfid izomeráz aktivitásával. A PPAR? szerepet játszik az apoptótikus sejteket eltávolító fagocitáló képesség kialakításában fokozva fagocitózis gének kifejeződését. A PPAR?, a retinoid receptor és az LXR receptor szignál utak összekapcsolódnak a makrofágok koleszterol szintjének szabályozásában. A PPAR? aktiváció hatására a dendritikus sejekből fokozott fagocitózisra, hatékony lipid prezentációra és iNKT aktivitásra képes alpopuláció alakul. Apopto-fagocita Taqman Low Density Array-t fejleszttünkl 94 gén mennyiségi kifejeződése vizsgálatára. Az autofágiával elhaló sejtek eltávolítása szintén fagocitózissal történik, specifikus gének indukálódnak. A dendritikus sejtek kölcsönhatása apoptótikus vagy nekrotikus sejtekkel alkalmas az immunválasz finom szabályozására. | In the supported Research School a new interdisciplinary research area has been developed to study the third synapse formed between apoptotic cells and those which engolfe them. It has been established that the transglutaminase 2 (TG2) enzyme plays an important role in the clearance of apoptotic cells, the lack of this enzyme leads to autoimmune disease. TG2 can enter the nucleus and its cell biochemical effects are related to modulation of gene expression and modification of the cytoskeleton. In Alzheimer's disease TG2 participates in the formation of covalently cross-linked protein aggregates. TG2 can protect hepatocytes and cardiomyocytes against apoptosis through its G protein and protein disulphide isomerase activities. PPARγ contributes to the development of phagocytic capacity of macrophages by inducing specific phagocytic genes. The PPARγ, rretinoid and LXR receptor signal pathways are interlinked in regulating cholesterol content of cells. Activation of PPARγ in dendritic cells leads to the development of a subpopulation with increased phagocytic capacity, effective lipid presentation and iNKT activity. An apopto-phagocytic Taqman Low Density array has been developed for quantitative measuring of 94 genes in parallel. Cells dying by autophagy are removed by the same mechanism as apoptotic cells while specific phagocytic genes are induced. Dendritic cells interacting with apoptotic cells can fine tune the immune system

    Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry

    No full text
    Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg−1) in DAS-59122-7 than in its isogenic line (~580 mg·kg−1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg−1) in MON 810 than in its isogenic line (~5 mg·kg−1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins

    Comparison and evaluation of seven different bench-top flow cytometers with a modified six-plexed mycotoxin kit.

    No full text
    Many bench-top flow cytometers (b-FCs) are compatible with microsphere-based multiplexed assays. Disciplines implementing b-FCs-based assays are expanding; they include monitoring and validating food quality. A multiplexed platform protocol was evaluated for poly-mycotoxin assays, which is compatible with a variety of b-FC models. The seven instruments included: BD FACSCalibur, BD FACSArray Bioanalyzer, Accuri C6, Partec CyFlow(R) Space, Beckman Coulter FC 500, Guava EasyCyte Mini, and Luminex 100 . Current reports related to the food industry describe fungal co-infections leading to poly-mycotoxin contamination in grain (Sulyok M, Berthiller F, Krska R, Schuhmacher R, Rapid Commun Mass Spectrom 2006;20:2649-2659). It is imperative to determine whether b-FC-based assays can replace traditional single-mycotoxin enzyme-linked immunosorbent assay (ELISA). A six-plexed poly-mycotoxin kit was tested on seven different b-FCs. The modified kit was initially developed for the BD FACSArray Bioanalyzer (BD Biosciences) (Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyik G, J Immunol Methods 2012;384:71-80). With the multiplexed platform, it is possible to identify up to six mycotoxin contaminants simultaneously at regional grain collection/transfer/inspection facilities. In the future, elimination of contaminated food threat may be better achieved with the inclusion of b-FCs in the food protection arsenal. A universal protocol, matched with postacquisition software, offers an effective alternative platform compared to using a series of ELISA kits. To support side-by-side evaluation of seven flow cytometers, an instrument-independent fluorescence emission calibration was added to the protocol. All instrument performances were evaluated for strength of agreement based on paired sets of evaluation to predicate method. The results suggest that all b-FCs were acceptable of performing with the multiplexed kit for five of six mycotoxins. For OTA, the detection sensitivity was consistent only for five of the seven instruments. (c) 2013 International Society for Advancement of Cytometry

    A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain.

    Get PDF
    Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects
    corecore