730 research outputs found
A note on a canonical dynamical r-matrix
It is well known that a classical dynamical -matrix can be associated with
every finite-dimensional self-dual Lie algebra \G by the definition
, where \omega\in \G and is the
holomorphic function given by for
z\in \C\setminus 2\pi i \Z^*. We present a new, direct proof of the statement
that this canonical -matrix satisfies the modified classical dynamical
Yang-Baxter equation on \G.Comment: 17 pages, LaTeX2
Adler-Kostant-Symes systems as Lagrangian gauge theories
It is well known that the integrable Hamiltonian systems defined by the
Adler-Kostant-Symes construction correspond via Hamiltonian reduction to
systems on cotangent bundles of Lie groups. Generalizing previous results on
Toda systems, here a Lagrangian version of the reduction procedure is exhibited
for those cases for which the underlying Lie algebra admits an invariant scalar
product. This is achieved by constructing a Lagrangian with gauge symmetry in
such a way that, by means of the Dirac algorithm, this Lagrangian reproduces
the Adler-Kostant-Symes system whose Hamiltonian is the quadratic form
associated with the scalar product on the Lie algebra.Comment: 10 pages, LaTeX2
On the spectra of the quantized action-variables of the compactified Ruijsenaars-Schneider system
A simple derivation of the spectra of the action-variables of the quantized
compactified Ruijsenaars-Schneider system is presented. The spectra are
obtained by combining Kahler quantization with the identification of the
classical action-variables as a standard toric moment map on the complex
projective space. The result is consistent with the Schrodinger quantization of
the system worked out previously by van Diejen and Vinet.Comment: Based on talk at the workshop CQIS-2011 (Protvino, Russia, January
2011), 12 page
On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras
According to Etingof and Varchenko, the classical dynamical Yang-Baxter
equation is a guarantee for the consistency of the Poisson bracket on certain
Poisson-Lie groupoids. Here it is noticed that Dirac reductions of these
Poisson manifolds give rise to a mapping from dynamical r-matrices on a pair
\L\subset \A to those on another pair \K\subset \A, where \K\subset
\L\subset \A is a chain of Lie algebras for which \L admits a reductive
decomposition as \L=\K+\M. Several known dynamical r-matrices appear
naturally in this setting, and its application provides new r-matrices, too. In
particular, we exhibit a family of r-matrices for which the dynamical variable
lies in the grade zero subalgebra of an extended affine Lie algebra obtained
from a twisted loop algebra based on an arbitrary finite dimensional self-dual
Lie algebra.Comment: 19 pages, LaTeX, added a reference and a footnote and removed some
typo
The Dirac equation in Taub-NUT space
Using chiral supersymmetry, we show that the massless Dirac equation in the
Taub-NUT gravitational instanton field is exactly soluble and explain the
arisal and the use of the dynamical (super) symmetry.Comment: An importatn misprint in a reference is corrected. Plain Tex. 8 page
Conserved quantities in non-abelian monopole fields
Van Holten's covariant Hamiltonian framework is used to find conserved
quantities for an isospin-carrying particle in a non-Abelian monopole-like
field. For a Wu-Yang monopole we find the most general scalar potential such
that the combined system admits a conserved Runge-Lenz vector. It generalizes
the fine-tuned inverse-square plus Coulomb potential, found before by McIntosh
and Cisneros, and by Zwanziger, for a charged particle in the field of a Dirac
monopole. Following Feh\'er, the result is interpreted as describing motion in
the asymptotic field of a self-dual Prasad-Sommerfield monopole. In the
effective non-Abelian field for nuclear motion in a diatomic molecule due to
Moody, Shapere and Wilczek, a conserved angular momentum is constructed,
despite the non-conservation of the electric charge. No Runge-Lenz vector has
been found.Comment: 8 pages, RevTex no figures. An error corrected and a new Section
adde
Hamiltonian reductions of free particles under polar actions of compact Lie groups
Classical and quantum Hamiltonian reductions of free geodesic systems of
complete Riemannian manifolds are investigated. The reduced systems are
described under the assumption that the underlying compact symmetry group acts
in a polar manner in the sense that there exist regularly embedded, closed,
connected submanifolds meeting all orbits orthogonally in the configuration
space. Hyperpolar actions on Lie groups and on symmetric spaces lead to
families of integrable systems of spin Calogero-Sutherland type.Comment: 15 pages, minor correction and updated references in v
Essays in law and economics
The first two papers of my PhD thesis focus on non-competition agreements, while the final chapter examines the liability of digital social media platforms for user-generated content. All three papers develop a microeconomic model grounded in standard labor economics theory to investigate how regulatory measures regarding noncompetes and digital platform liability could enhance social welfare
- âŠ