20 research outputs found

    Integrating livelihoods and conservation in protected areas: Understanding the role and stakeholder views on prospects for non-timber forest products, a Bangladesh case study

    Get PDF
    Protected areas (PAs) represent a key global strategy in biodiversity conservation. In tropical developing countries, the management of PAs is a great challenge as many contain resources on which local communities rely. Collection and trading of non-timber forest products (NTFPs) is a well-established forest-based livelihood strategy, which has been promoted as a potential means for enhanced conservation and improved rural livelihoods in recent years, even though the sustainability or ecological implications have rarely been tested. We conducted an exploratory survey to understand the role and stakeholder views on conservation prospects and perceived ecological feasibility of NTFPs and harvesting schemes in a northeastern PA of Bangladesh, namely the Satchari National Park. Households (n = 101) were interviewed from three different forest dependency categories, adopting a stratified random sampling approach and using a semi-structured questionnaire. The study identified 13 locally important NTFPs, with five being critically important to supporting local livelihoods. Our study suggests that collection, processing and trading in NTFPs constitutes the primary occupation for about 18% of local inhabitants and account for an estimated 19% of their cash annual income. The household consensus on issues relating to NTFPs and their prospective role in conservation was surprisingly high, with 48% of respondents believing that promotion of NTFPs in the PA could have positive conservation value. The majority (71%) of households also had some understanding of the ecological implications of NTFP harvesting, sustainability (53%) and possible management and monitoring regimes (100%). With little known about their real application in the field, our study suggests further investigations are required to understand the ecological compatibility of traditional NTFP harvesting patterns and management. © 2010 Taylor & Francis

    Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections

    No full text
    <div><p>Astroviruses (AstVs) are positive sense, single-stranded RNA viruses transmitted to a wide range of hosts via the fecal-oral route. The number of AstV-infected animal hosts has rapidly expanded in recent years with many more likely to be discovered because of the advances in viral surveillance and next generation sequencing. Yet no study to date has identified human AstV genotypes in animals, although diverse AstV genotypes similar to animal-origin viruses have been found in children with diarrhea and in one instance of encephalitis. Here we provide important new evidence that non-human primates (NHP) can harbor a wide variety of mammalian and avian AstV genotypes, including those only associated with human infection. Serological analyses confirmed that >25% of the NHP tested had antibodies to human AstVs. Further, we identified a recombinant AstV with parental relationships to known human AstVs. Phylogenetic analysis suggests AstVs in NHP are on average evolutionarily much closer to AstVs from other animals than are AstVs from bats, a frequently proposed reservoir. Our studies not only demonstrate that human astroviruses can be detected in NHP but also suggest that NHP are unique in their ability to support diverse AstV genotypes, further challenging the paradigm that astrovirus infection is species-specific.</p></div

    NHPs harbor diverse AstV genotypes.

    No full text
    <p>RdRp sequences were aligned using MAFFT v7.058b and phylogenetic trees were constructed and evolutionary history inferred using the Neighbor-Joining method in MEGA6. GenBank accession numbers for the reference strains are given before the strain name and assigned or putative (in italics) AstV genogroups listed in parenthesis. Human viruses are in red and NHP samples in blue.</p

    Evidence of recombination.

    No full text
    <p>A cBrother analysis established the recombinant relationship between the human AstV lineage represented by sequence N.L23513 and the NHP AstV lineage represented by the sequence from BG31. Both the top and bottom panels share a common X-axis representing the position within the trimmed alignment. The top panel represents the posterior probability of ancestral assignment for the corresponding ancestral line at a given position within the alignment. The bottom panel represents the number of crossover points which occur at a given alignment position out of the 1000 samples taken from the MCMC chain.</p

    NHPs harbor AstV genotypes associated with human infections.

    No full text
    <p>(A) Magnified HAstV clade from <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005225#ppat.1005225.g001" target="_blank">Fig 1</a>. (B-C) Clustal W alignments on ~300 nucleotides from the ORF2 capsid gene of NHP BG36 (B) or ~900 nucleotides of NHP BG31 (C) were performed using BioEdit and MEGA6. Phylogenetic trees were constructed and evolutionary history inferred using the Neighbor-Joining method. GenBank accession numbers for the reference strains are given before the strain name and assigned AstV genogroups listed. Human viruses are in red and NHP in blue.</p
    corecore