11 research outputs found

    Π‘ΠžΠ‘Π’ΠΠ’ Π‘ΠžΠžΠ‘Π©Π•Π‘Π’Π’Π ΠœΠ˜ΠšΠ ΠžΠžΠ Π“ΠΠΠ˜Π—ΠœΠžΠ’ Π’ Π”Π«Π₯АВЕЛЬНЫΠ₯ ПУВЯΠ₯ Π£ Π—Π”ΠžΠ ΠžΠ’Π«Π₯ Π›Π˜Π¦ И Π‘ΠžΠ›Π¬ΠΠ«Π₯ Π‘Π ΠžΠΠ₯Π˜ΠΠ›Π¬ΠΠžΠ™ ΠΠ‘Π’ΠœΠžΠ™

    Get PDF
    This review summarizes the results of studies on the composition of microbial communities in the airways of healthy individuals and patients with asthma. Modern molecular genetic technology of the microbial identification, which are based on a sequence determination of encoding proteins genes conserved regions. These regions form the 16s-subunit ribosomal RNA in microorganisms of different species. These genes are detected by sequencing markers characteristic of individual microorganisms and their phylogenetic groups, and allow to perform a deep analysis of the microbiota in healthy volunteers and patients with chronic bronchoobstructive diseases. So, apparently healthy human bronchial tree is characterized by low bacterial contamination (most typical representatives here are the genera Pseudomonas, Streptococcus, Prevotella, Fusobacteria and Veilonella, much less potentially pathogenic Haemophilus and Neisseria are represented). In bronchial asthma patients the lower respiratory tract microbiota undergoes a qualitative transformation: as compared to healthy individuals the number of Proteobacteria increases and the number of Bacteroidetes decreases. Severe asthma in children is associated with significant respiratory tract Staphylococcus spp. insemination. Association between the asthma developing higher risk in young children and organisms such as Haemophilus, Moraxella and Neisseria spp. It is of considerable interest to determine the role of the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the development of resistance to therapy.Π’ ΠΎΠ±Π·ΠΎΡ€Π΅ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ состава сообщСства ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… путях Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π»ΠΈΡ† ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмой. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ молСкулярно-гСнСтичСской ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² основаны Π½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ консСрвативных участков Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ 16s-ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Ρ€ΠΈΠ±ΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислоты ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ². Π”Π°Π½Π½Ρ‹Π΅ Π³Π΅Π½Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ выявляСмыС сСквСнированиСм ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ‹, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ для ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈ ΠΈΡ… филогСнСтичСских Π³Ρ€ΡƒΠΏΠΏ, ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌΠ° ΠΊΠ°ΠΊ Ρƒ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π΅Π², Ρ‚Π°ΠΊ ΠΈ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… хроничСскими бронхообструктивными заболСваниями. Π’Π°ΠΊ, Ρƒ практичСски Π·Π΄ΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ Π΄Π΅Ρ€Π΅Π²ΠΎ характСризуСтся Π½ΠΈΠ·ΠΊΠΎΠΉ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ΅Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ (Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ прСдставитСли Ρ€ΠΎΠ΄ΠΎΠ² Pseudomonas, Streptococcus, Prevotella, Fusobacteria ΠΈ Veilonella, Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅ΠΆΠ΅ прСдставлСны ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Haemophilus ΠΈ Neisseria). Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π±Ρ€ΠΎΠ½-Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмой ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Π° Π½ΠΈΠΆΠ½ΠΈΡ… Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ подвСргаСтся качСствСнной трансформации: ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹ΠΌΠΈ ΠΈΠ½Π΄ΠΈ-Π²ΠΈΠ΄ΡƒΡƒΠΌΠ°ΠΌΠΈ количСство Proteobacteria увСличиваСтся, Π° Bacteroidetes β€” ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ. ВяТСлая Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½Π°Ρ астма Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ ассоциирована со Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ ΠΎΠ±ΡΠ΅ΠΌΠ΅Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ Staphylococcus spp. Π’Π°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° ассоциация Π±ΠΎΠ»Π΅Π΅ высокого риска развития аст-ΠΌΡ‹ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Ρ€Π°Π½Π½Π΅Π³ΠΎ возраста ΠΈ Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, ΠΊΠ°ΠΊ Haemophilus, Moraxella ΠΈ Neisseria spp. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ интСрСс ΠΊΠ°ΠΊ для опрСдСлСния Ρ€ΠΎΠ»ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠΌΠ° Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Π±Ρ€ΠΎΠ½Ρ…ΠΎΠ»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ систСмы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Ρ‚Π°ΠΊ ΠΈ для понимания влияния микробиотичСских сообщСств Π½Π° особСнности тСчСния Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ рСзистСнтности ΠΊ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.

    ΠŸΡ€ΠΎΠ³Π½ΠΎΡΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² прогрСссировании хроничСской обструктивной Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ… Π² зависимости ΠΎΡ‚ фСнотипичСских особСнностСй заболСвания

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is characterized by progressive limitation of airflow rate, hyperergic inflammatory response of the respiratory tract, and systemic manifestations. Prognosis of the disease depends on the severity of these pathogenetic components. FEV1 which characterizes the speed limit airflow do not allow predicting the rate of COPD progression. Aims: comparison of the prognostic significance of such clinical parameters as frequency of exacerbations and the development of comorbid diseases to assess the nature of COPD progression by using different classification approaches. Materials and methods: The prospective comparative study included 98 patients with COPD. In the framework of the study protocol, 2 visits were required when a practitioner recruited patients who met inclusion/exclusion criteria, obtained the signed informed consent, collected the anamnestic data, and performed basic procedures of the study: spirometry, 6-minute stepper test, assessment of dyspnea on questionnaire mMRC, body plethysmography, lung diffusion capacity study, dopplerechocardiography, tomography of the chest. Visit 2 was conducted in 12 months after the first one to assess the dynamics of the disease. The dynamics of the disease was considered negative if, upon repeated examination, the patient was referred to the group with more severe COPD. Results: Our study demonstrates that comprehensive assessment of such factors as the frequency of COPD exacerbations in the preceding 12 months and the presence of comorbid diseases in a patient is reasonable for assessment of disease severity and determination of disease prognosis. At the same time the frequency of COPD exacerbations as one of the evaluated factors is most strongly associated with disease progression. Conclusions: Thus, a practitioner is recommended to use the proposed additional clinical criteria to assess the severity and degree of progression of COPD.ОбоснованиС. Π₯роничСская обструктивная болСзнь Π»Π΅Π³ΠΊΠΈΡ… (Π₯ΠžΠ‘Π›) β€” хроничСскоС Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ с ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ скорости Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°, гипСрСргичСским Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠΌ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ ΠΈ систСмными проявлСниями. ΠžΡ‚ стСпСни выраТСнности этих патогСнСтичСских ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² зависит ΠΏΡ€ΠΎΠ³Π½ΠΎΠ· тСчСния заболСвания. Показано, Ρ‡Ρ‚ΠΎ характСристика ограничСния скорости Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° (объСм форсированного Π²Ρ‹Π΄ΠΎΡ…Π° Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду) Π½Π΅ позволяСт с высокой Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ прогрСссирования Π₯ΠžΠ‘Π›.ЦСль исслСдования: сравнСниС прогностичСской значимости Ρ‚Π°ΠΊΠΈΡ… клиничСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΊΠ°ΠΊ частота обострСний ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π° прогрСссирования Π₯ΠžΠ‘Π› ΠΏΡ€ΠΈ использовании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… классификационных ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. На основании Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° Π² проспСктивноС ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 98 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯ΠžΠ‘Π›. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° прСдусмотрСно 2 Π²ΠΈΠ·ΠΈΡ‚Π°, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΡ… ΠΎΡ†Π΅Π½ΠΊΡƒ соотвСтствия ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° критСриям Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ/ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ, подписаниС ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ согласия, сбор анамнСстичСских Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ основных ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ исслСдования (ΠΎΡ†Π΅Π½ΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ внСшнСго дыхания, 6-ΠΌΠΈΠ½ΡƒΡ‚Π½Ρ‹ΠΉ ΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΉ тСст, ΠΎΡ†Π΅Π½ΠΊΠ° ΠΎΠ΄Ρ‹ΡˆΠΊΠΈ ΠΏΠΎ опроснику mMRC, бодиплСтизмография, исслСдованиС Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ способности Π»Π΅Π³ΠΊΠΈΡ…, допплСрэхокардиография, ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½Π°Ρ томография ΠΎΡ€Π³Π°Π½ΠΎΠ² Π³Ρ€ΡƒΠ΄Π½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ). Π’Ρ‚ΠΎΡ€ΠΎΠΉ Π²ΠΈΠ·ΠΈΡ‚ проводился Ρ‡Π΅Ρ€Π΅Π· 12 мСс послС ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ с Ρ†Π΅Π»ΡŒΡŽ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ заболСвания, которая ΡΡ‡ΠΈΡ‚Π°Π»Π°ΡΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Ссли ΠΏΠΎ ΠΏΡ€ΠΎΡˆΠ΅ΡΡ‚Π²ΠΈΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° наблюдСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Π³Ρ€ΡƒΠΏΠΏΡƒ Π₯ΠžΠ‘Π› с Π±ΠΎΠ»Π΅Π΅ тяТСлым Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ. ΠšΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹ΠΌΠΈ заболСваниями ΡΡ‡ΠΈΡ‚Π°Π»ΠΈΡΡŒ сниТСниС индСкса массы Ρ‚Π΅Π»Π° ΠΌΠ΅Π½Π΅Π΅ 21, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ остСопороза, Π°Π½Π΅ΠΌΠΈΠΈ, сСрдСчно-сосудистых Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, язвСнной Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ°, сахарного Π΄ΠΈΠ°Π±Π΅Ρ‚Π° 2-Π³ΠΎ Ρ‚ΠΈΠΏΠ°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ Π½Π°ΠΌΠΈ исслСдованиС ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ цСлСсообразности комплСксной ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚Π°ΠΊΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠ°ΠΊ частота обострСний Π₯ΠžΠ‘Π› Π·Π° ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ 12 мСс ΠΈ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΊΠΎΠΌΠΎΡ€Π±ΠΈΠ΄Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ Ρƒ больного ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ тяТСсти тСчСния заболСвания ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π°. ΠŸΡ€ΠΈ этом частота обострСний Π₯ΠžΠ‘Π› срСди ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π΅ΠΌΡ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ сильно связана с прогрСссированиСм заболСвания.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, практичСскому Π²Ρ€Π°Ρ‡Ρƒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ клиничСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ для комплСксной ΠΎΡ†Π΅Π½ΠΊΠΈ тяТСсти ΠΈ стСпСни прогрСссирования Π₯ΠžΠ‘Π›

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… хроничСской обструктивной болСзнью Π»Π΅Π³ΠΊΠΈΡ… ΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмой Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни тяТСсти

    Get PDF
    Backgraund:Β The result of comparative study of oropharyngeal microbiota taxonomic composition in patients with different severity level of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) is presented in this paper.Β Aims:Β To compare oropharyngeal microbiota composition in case of bronchial asthma and chronic obstructive pulmonary disease in different severity levels.Β Metods:Β 138 patients, 50 with BA and 88 with COPD were studied. For each patient was collected anamnesis vitae, swab from the back of the throat and performed physical examination. High-throughput 16S ribosomal RNA gene sequencing and bioinformatic analysis was employed to characterize the microbial communities.Β Results:Β As a result of the study was found a number of differences on various taxonomic levels in microbiota’s composition within group of patients with different severity level of BA and group of patients with different severity level of COPD and between those groups. COPD patients with GOLD 1–2 in comparison with GOLD 3–4 patiens are marked by prevalence of species Brevibacterium aureum, genus Scardovia, Coprococcus, Haemophilus, Moryella, Dialister, Paludibacter and decrease of Prevotella melaninogenica species. BA patients with severe uncontrolled asthma in comparison with patients which have mild persistent asthma are marked by decrease of Prevotella and increase of species Bifidobacterium longum, Prevotella nanceiensis, Neisseria cinerea, Aggregatibacter segnis and genus Odoribacter, Alloiococcus, Lactobacillus, Megasphaera, Parvimonas, Sneathia. Patient’s microbiota in BA group in comparison with COPD group is characterized by the prevalence of Prevotella melaninogenica and genus Selenomonas, Granulicatella ΠΈ Gemella, and decrease of Prevotella nigrescens, Haemophilus influenza and genus Aggregatibacter, Alloiococcus, Catonella, Mycoplasma, Peptoniphilus ΠΈ Sediminibacterium. There are no differences between microbiota composition in case of severe uncontrolled BA and very severe COPD.Β Conclusion:Β Lack of differences in oropharyngeal microbiota taxonomic composition between patients with severe uncontrolled BA and very severe COPD allow us to suggest a similarity of bronchopulmonary system condition in case of diseases' severe stages.ОбоснованиС.Β Π₯арактСристика ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ ΠΏΡ€ΠΈ хроничСской обструктивной Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π»Π΅Π³ΠΊΠΈΡ… (Π₯ΠžΠ‘Π›) ΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмС (БА) Π² зависимости ΠΎΡ‚ тяТСсти тСчСния Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Π² ΠΈΡ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Π·Π΅. ЦСль исслСдования:Β ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· состава ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ ΠΏΡ€ΠΈ Π₯ΠžΠ‘Π› ΠΈ БА Ρ€Π°Π·Π½ΠΎΠΉ стСпСни выраТСнности симптомов.Β ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹.Β Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 138 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΈΠ· Π½ΠΈΡ… 88 с Π₯ΠžΠ‘Π›, 50 β€” с БА. Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° Π±Ρ‹Π» собран Π°Π½Π°ΠΌΠ½Π΅Π· ΠΆΠΈΠ·Π½ΠΈ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΌΠ°Π·ΠΎΠΊ ΠΈΠ· ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ области. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ таксономичСского состава ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ сСквСнированиСм Π³Π΅Π½ΠΎΠ² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ 16SΒ Ρ€Π ΠΠš с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ биоинформатичСским ΠΈ статистичСским Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ.Β Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.Β ΠŸΡ€ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ Π±Ρ‹Π»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ различия Π² прСдставлСнности ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Для ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯ΠžΠ‘Π› 1–2-ΠΉ стСпСни тяТСсти Π² сравнСнии с ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ Π₯ΠžΠ‘Π› 3–4-ΠΉ стСпСни Π½Π° Ρ„ΠΎΠ½Π΅ сниТСния прСдставлСнностиPrevotellaΒ melaninogenicaΒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ Π±ΠΎΠ»Π΅Π΅ высокоС содСрТаниС BrevibacteriumΒ aureumΒ ΠΈ прСдставитСлСй Ρ€ΠΎΠ΄Π°Β Scardovia,Β Coprococcus,Β Haemophilus,Β Moryella,Β DialisterΒ ΠΈΒ Paludibacter. ΠœΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Π° ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тяТСлой БА Π² сравнСнии с Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉ ΠΏΡ€ΠΈ Π»Π΅Π³ΠΊΠΎΠΉ ΠΏΠ΅Ρ€ΡΠΈΡΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ Π½Π° Ρ„ΠΎΠ½Π΅ Π±ΠΎΠ»Π΅Π΅ Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ содСрТания Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Ρ€ΠΎΠ΄Π°Β Prevotella характСризуСтся Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ присутствиСм BifidobacteriumΒ longum,Β PrevotellaΒ nanceiensis,Β NeisseriaΒ cinerea,Β AggregatibacterΒ segnis, Π° Ρ‚Π°ΠΊΠΆΠ΅ прСдставитСлСй Ρ€ΠΎΠ΄Π°Β Odoribacter,Β Alloiococcus,Β Lactobacillus,Β Megasphaera,Β ParvimonasΒ ΠΈΒ Sneathia. ΠŸΡ€ΠΈ сравнСнии ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… БА ΠΈ Π₯ΠžΠ‘Π› для ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с БА ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»Π°ΡΡŒ Π±ΠΎΠ»Π΅Π΅ высокая ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒΒ P.Β melaninogenicaΒ ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€ΠΎΠ΄Π°Β Selenomonas,Β Granulicatella,Β Gemella, Π° Ρ‚Π°ΠΊΠΆΠ΅ сниТСниС PrevotellaΒ nigrescens,Β HaemophilusΒ influenzaeΒ ΠΈΒ Aggregatibacter,Β Alloiococcus,Β Catonella,Β Mycoplasma,Β Peptoniphilus,Β Sediminibacterium. ΠŸΡ€ΠΈ этом различия Π² составС ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… тяТСлой Π½Π΅ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ БА ΠΈ Π₯ΠžΠ‘Π› ΠΎΡ‡Π΅Π½ΡŒ тяТСлого тСчСния Π½Π΅ выявлСны.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅.Β ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΈ ΠΎΡ€ΠΎΡ„Π°Ρ€ΠΈΠ½Π³Π΅Π°Π»ΡŒΠ½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΡ‚Ρ‹ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с тяТСлыми Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ Π₯ΠžΠ‘Π› ΠΈ БА позволяСт Π²Ρ‹ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ сходствС состояния Π±Ρ€ΠΎΠ½Ρ…ΠΎΠ»Π΅Π³ΠΎΡ‡Π½ΠΎΠΉ систСмы ΠΏΡ€ΠΈ тяТСлых стадиях развития Π΄Π°Π½Π½Ρ‹Ρ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ

    The airways microbial community composition in healthy individuals and bronchial asthma patients

    No full text
    This review summarizes the results of studies on the composition of microbial communities in the airways of healthy individuals and patients with asthma. Modern molecular genetic technology of the microbial identification, which are based on a sequence determination of encoding proteins genes conserved regions. These regions form the 16s-subunit ribosomal RNA in microorganisms of different species. These genes are detected by sequencing markers characteristic of individual microorganisms and their phylogenetic groups, and allow to perform a deep analysis of the microbiota in healthy volunteers and patients with chronic bronchoobstructive diseases. So, apparently healthy human bronchial tree is characterized by low bacterial contamination (most typical representatives here are the genera Pseudomonas, Streptococcus, Prevotella, Fusobacteria and Veilonella, much less potentially pathogenic Haemophilus and Neisseria are represented). In bronchial asthma patients the lower respiratory tract microbiota undergoes a qualitative transformation: as compared to healthy individuals the number of Proteobacteria increases and the number of Bacteroidetes decreases. Severe asthma in children is associated with significant respiratory tract Staphylococcus spp. insemination. Association between the asthma developing higher risk in young children and organisms such as Haemophilus, Moraxella and Neisseria spp. It is of considerable interest to determine the role of the microbiome in the development of human diseases of the bronchopulmonary system, and to understand the impact of the microbes communities as a course of disease and the important factor for the development of resistance to therapy

    Microbiological oropharyngeal patterns in patients with different phenotypes of chronic obstructive pulmonary disease

    No full text
    Persistent bronchial inflammation in chronic obstructive pulmonary disease (COPD) is considered the cause of ventilation disorders and related contamination with conditionally pathogenic microorganisms; the latter can proceed and transform into a full infection, which can aggravate and exacerbate COPD. The aim of the study was to evaluate the relations between the oropharyngeal microbiota in patients with COPD and the clinical, functional, and prognostic parameters of the disease. Materials and Methods. 64 patients with COPD were included in the study; the participants were scheduled to visit our clinic on two occasions. In the first visit, their medical history was studied in detail and the major examination procedures were conducted. Those included an assessment of the respiratory function, the 6-minute walk test, the degree of dyspnea by the Medical Research Council scale, body plethysmography, the diffusion capacity of the lungs, and a chest CT scan. The second visit took place 12 months after the first one to assess the changes in the course of the disease. The result was considered negative if, in the second examination, the patientβ€˜s condition was found more severe. Oropharyngeal samples of all patients were sequenced to identify the V3–V4 variable sites of the 16S rRNA gene. Results. It is found that the microbiological oropharyngeal patterns in COPD patients depend on the source of micro-aspiration. In addition, the changes in the oropharyngeal microbiota correlate with the severity and prognosis of the disease, as well as the patient phenotype. Based on the data obtained by sequencing parts of the 16S rRNA gene, the role of oropharyngeal microbiota in determining the course and prognosis of COPD has been elucidated. Conclusion. The presented clinical and functional characteristics associated with oropharyngeal microbiota indicate that microaspirations from other body compartments not only affect the composition of oropharyngeal microbiota in patients with COPD but also have an important prognostic significance. Β© 2018, Nizhny Novgorod State Medical Academy. All rights reserved

    Microbiological oropharyngeal patterns in patients with different phenotypes of chronic obstructive pulmonary disease

    No full text
    Persistent bronchial inflammation in chronic obstructive pulmonary disease (COPD) is considered the cause of ventilation disorders and related contamination with conditionally pathogenic microorganisms; the latter can proceed and transform into a full infection, which can aggravate and exacerbate COPD. The aim of the study was to evaluate the relations between the oropharyngeal microbiota in patients with COPD and the clinical, functional, and prognostic parameters of the disease. Materials and Methods. 64 patients with COPD were included in the study; the participants were scheduled to visit our clinic on two occasions. In the first visit, their medical history was studied in detail and the major examination procedures were conducted. Those included an assessment of the respiratory function, the 6-minute walk test, the degree of dyspnea by the Medical Research Council scale, body plethysmography, the diffusion capacity of the lungs, and a chest CT scan. The second visit took place 12 months after the first one to assess the changes in the course of the disease. The result was considered negative if, in the second examination, the patientβ€˜s condition was found more severe. Oropharyngeal samples of all patients were sequenced to identify the V3–V4 variable sites of the 16S rRNA gene. Results. It is found that the microbiological oropharyngeal patterns in COPD patients depend on the source of micro-aspiration. In addition, the changes in the oropharyngeal microbiota correlate with the severity and prognosis of the disease, as well as the patient phenotype. Based on the data obtained by sequencing parts of the 16S rRNA gene, the role of oropharyngeal microbiota in determining the course and prognosis of COPD has been elucidated. Conclusion. The presented clinical and functional characteristics associated with oropharyngeal microbiota indicate that microaspirations from other body compartments not only affect the composition of oropharyngeal microbiota in patients with COPD but also have an important prognostic significance. Β© 2018, Nizhny Novgorod State Medical Academy. All rights reserved

    Practical recommendations for choosing an immunobiological preparation for the treatment of severe bronchial asthma of T2-endotype

    No full text
    Β© 2020 Medical Education. All rights reserved. Biological therapy of bronchial asthma (BA) is a modern method of treating severe forms of the disease, that are uncontrolled by traditional pharmacotherapeutic approaches. Currently, 5 monoclonal antibody (AT) preparations are registered in the world for the treatment of severe bronchial asthma (SBA) of the T2 endotype (T2-SBA) - antibodies, binding to immunoglobulin (Ig) E (anti-IgE - omalizumab), interleukin antagonists (IL)-5 (anti-IL-5 - mepolizumab, resizumab) and its receptor (anti-IL-5RΞ± - benralizumab), as well as antibodies, that selectively bind to the IL-4 and -13 receptor (anti-IL-4 /13RΞ± - dupilumab). The article presents data on the effectiveness of these drugs in relation to the key characteristics of SBA, formulates clinical and laboratory criteria, the study of which in real practice can potentially predict the likelihood of a clinical response to a particular type of biological therapy. An algorithm is proposed for choosing a targeted therapy strategy for patients with SBA, clinically associated with allergies, for patients with severe non-allergic eosinophilic BA and for patients with eosinophilic BA of a combined phenotype
    corecore