4 research outputs found

    Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters

    Get PDF
    Summary The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.</jats:p

    Comparative metagenomic analysis of electrogenic microbial communities in differentially inoculated swine wastewater-fed microbial fuel cells

    Get PDF
    Bioelectrochemical systems such as microbial fuel cells (MFCs) are promising new technologies for efficient removal of organic compounds from industrial wastewaters, including that generated from swine farming. We inoculated two pairs of laboratory-scale MFCs with sludge granules from a beer wastewater-treating anaerobic digester (IGBS) or from sludge taken from the bottom of a tank receiving swine wastewater (SS). The SS-inoculated MFC outperformed the IGBS-inoculated MFC with regard to COD and VFA removal and electricity production. Using a metagenomic approach, we describe the microbial diversity of the MFC planktonic and anodic communities derived from the different inocula. Proteobacteria (mostly Deltaproteobacteria) became the predominant phylum in both MFC anodic communities with amplification of the electrogenic genus Geobacter being the most pronounced. Eight dominant and three minor species of Geobacter were found in both MFC anodic communities. The anodic communities of the SS-inoculated MFCs had a higher proportion of Clostridium and Bacteroides relative to those of the IGBS-inoculated MFCs, which were enriched with Pelobacter. The archaeal populations of the SS- and IGBS-inoculated MFCs were dominated by Methanosarcina barkeri and Methanothermobacter thermautotrophicus, respectively. Our results show a long-term influence of inoculum type on the performance and microbial community composition of swine wastewater-treating MFCs

    Novel Electrochemically Active Bacterium Phylogenetically Related to Arcobacter butzleri, Isolated from a Microbial Fuel Cell▿ †

    Get PDF
    Exoelectrogenic bacteria are organisms that can transfer electrons to extracellular insoluble electron acceptors and have the potential to be used in devices such as microbial fuel cells (MFCs). Currently, exoelectrogens have been identified in the Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as in the Firmicutes and Acidobacteria. Here, we describe use of culture-independent methods to identify two members of the genus Arcobacter in the Epsilonproteobacteria that are selectively enriched in an acetate-fed MFC. One of these organisms, Arcobacter butzleri strain ED-1, associates with the electrode and rapidly generates a strong electronegative potential as a pure culture when it is supplied with acetate. A mixed-community MFC in which ∼90% of the population is comprised of the two Arcobacter species generates a maximal power density of 296 mW/liter. This demonstration of exoelectrogenesis by strain ED-1 is the first time that this property has been shown for members of this genus

    Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters

    No full text
    The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs
    corecore