4,800 research outputs found
Affine Grassmannians of group schemes and exotic principal bundles over A¹
Let G be a simple simply-connected group scheme over a regular local scheme
U. Let E be a principal G-bundle over A^1_U trivial away from a subscheme
finite over U. We show that E is not necessarily trivial and give some criteria
of triviality. To this end we define affine Grassmannians for group schemes and
study their Bruhat decompositions for semi-simple group schemes. We also give
examples of principal G-bundles over A^1_U with split G such that the bundles
are not isomorphic to pull-backs from U.Comment: Introduction re-written. Other minor improvements. Final versio
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions
Momentum distributions of particles from nuclear break-up of fast three-body
halos are calculated consistently, and applied to Li. The same two-body
interactions between the three particles are used to calculate the ground state
structure and the final state of the reaction processes. We reproduce the
available momentum distributions from Li fragmentation, together with
the size and energy of Li, with a neutron-core relative state containing
a -state admixture of 20\%-30\%. The available fragmentation data strongly
suggest an -state in Li at about 50 keV, and indicate a -state
around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file
attached at the end of the LaTeX file). To be published in Phys. Rev.
alpha particle momentum distributions from 12C decaying resonances
The computed particle momentum distributions from the decay of
low-lying C resonances are shown. The wave function of the decaying
fragments is computed by means of the complex scaled hyperspherical adiabatic
expansion method. The large-distance part of the wave functions is crucial and
has to be accurately calculated. We discuss energy distributions, angular
distributions and Dalitz plots for the , and states of
C.Comment: 6 pages, 4 figures. Proceedings of the SOTANCP2008 conference held in
Strasbourg in May 200
Relative production rates of He, Be, C in astrophysical environments
We assume an environment of neutrons and -particles of given density
and temperature where nuclear syntheses into He, Be and C
are possible. We investigate the resulting relative abundance as a function of
density and temperature. When the relative abundance of -particles
is between 0.2 and 0.9, or larger than 0.9, the largest production
is Be or C, respectively. When He is mostly
frequently produced for temperatures above about 2 GK whereas the Be
production dominates at smaller temperatures.Comment: 5 pages, 4 figure
Practical cryptographic strategies in the post-quantum era
We review new frontiers in information security technologies in
communications and distributed storage technologies with the use of classical,
quantum, hybrid classical-quantum, and post-quantum cryptography. We analyze
the current state-of-the-art, critical characteristics, development trends, and
limitations of these techniques for application in enterprise information
protection systems. An approach concerning the selection of practical
encryption technologies for enterprises with branched communication networks is
introduced.Comment: 5 pages, 2 figures; review pape
Upper bounds for the number of orbital topological types of planar polynomial vector fields "modulo limit cycles"
The paper deals with planar polynomial vector fields. We aim to estimate the
number of orbital topological equivalence classes for the fields of degree n.
An evident obstacle for this is the second part of Hilbert's 16th problem. To
circumvent this obstacle we introduce the notion of equivalence modulo limit
cycles. This paper is the continuation of the author's paper in [Mosc. Math. J.
1 (2001), no. 4] where the lower bound of the form 2^{cn^2} has been obtained.
Here we obtain the upper bound of the same form. We also associate an equipped
planar graph to every planar polynomial vector field, this graph is a complete
invariant for orbital topological classification of such fields.Comment: 23 pages, 5 figure
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
- …